IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i9p2416-d542142.html
   My bibliography  Save this article

Real-World Implementation of an ICT-Based Platform to Promote Energy Efficiency

Author

Listed:
  • Marina Dorokhova

    (École Polytechnique Fédérale de Lausanne (EPFL), STI IMT PV-LAB, MC A2 304 (Microcity), Rue de la Maladière 71b, CH-2002 Neuchâtel, Switzerland)

  • Fernando Ribeiro

    (Institute for Systems and Computing Engineering, Tecnology and Science (INESC TEC), Campus da Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal)

  • António Barbosa

    (Institute for Systems and Computing Engineering, Tecnology and Science (INESC TEC), Campus da Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal)

  • João Viana

    (Institute for Systems and Computing Engineering, Tecnology and Science (INESC TEC), Campus da Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal)

  • Filipe Soares

    (Institute for Systems and Computing Engineering, Tecnology and Science (INESC TEC), Campus da Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal)

  • Nicolas Wyrsch

    (École Polytechnique Fédérale de Lausanne (EPFL), STI IMT PV-LAB, MC A2 304 (Microcity), Rue de la Maladière 71b, CH-2002 Neuchâtel, Switzerland)

Abstract

The energy efficiency requirements of most energy-consuming sectors have increased recently in response to climate change. For buildings, this means targeting both facility managers and building users with the aim of identifying potential energy savings and encouraging more energy-responsible behaviors. The Information and Communication Technology (ICT) platform developed in Horizon 2020 FEEdBACk project intends to fulfill these goals by enabling the optimization of energy consumption, generation, and storage and control of flexible devices without compromising comfort levels and indoor air quality parameters. This work aims to demonstrate the real-world implementation and functionality of the ICT platform composed of Load Disaggregation, Net Load Forecast, Occupancy Forecast, Automation Manager, and Behavior Predictor applications. Particularly, the results obtained by individual applications during the test phase are presented alongside the specific metrics used to evaluate their performance.

Suggested Citation

  • Marina Dorokhova & Fernando Ribeiro & António Barbosa & João Viana & Filipe Soares & Nicolas Wyrsch, 2021. "Real-World Implementation of an ICT-Based Platform to Promote Energy Efficiency," Energies, MDPI, vol. 14(9), pages 1-23, April.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:9:p:2416-:d:542142
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/9/2416/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/9/2416/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Iria, José & Soares, Filipe & Matos, Manuel, 2019. "Optimal bidding strategy for an aggregator of prosumers in energy and secondary reserve markets," Applied Energy, Elsevier, vol. 238(C), pages 1361-1372.
    2. Jonas Rothfuss & Fabio Ferreira & Simon Walther & Maxim Ulrich, 2019. "Conditional Density Estimation with Neural Networks: Best Practices and Benchmarks," Papers 1903.00954, arXiv.org, revised Apr 2019.
    3. Mustafa Alparslan Zehir & Kadir Baris Ortac & Hakan Gul & Alp Batman & Zafer Aydin & João Carlos Portela & Filipe Joel Soares & Mustafa Bagriyanik & Unal Kucuk & Aydogan Ozdemir, 2019. "Development and Field Demonstration of a Gamified Residential Demand Management Platform Compatible with Smart Meters and Building Automation Systems," Energies, MDPI, vol. 12(5), pages 1-18, March.
    4. Antonio Paone & Jean-Philippe Bacher, 2018. "The Impact of Building Occupant Behavior on Energy Efficiency and Methods to Influence It: A Review of the State of the Art," Energies, MDPI, vol. 11(4), pages 1-19, April.
    5. Kenneth Gillingham, Matthew Harding, and David Rapson, 2012. "Split Incentives in Residential Energy Consumption," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    6. Filipe Soares & André Madureira & Andreu Pagès & António Barbosa & António Coelho & Fernando Cassola & Fernando Ribeiro & João Viana & José Andrade & Marina Dorokhova & Nélson Morais & Nicolas Wyrsch , 2021. "FEEdBACk: An ICT-Based Platform to Increase Energy Efficiency through Buildings’ Consumer Engagement," Energies, MDPI, vol. 14(6), pages 1-43, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martin Rovňák & Alexander Tokarčík & Lenka Štofejová & Roman Novotný & Peter Adamišin & Matúš Bakoň, 2021. "Design of the Model of Optimization of Energy Efficiency Management Processes at the Regional Level of Slovakia," Energies, MDPI, vol. 14(20), pages 1-9, October.
    2. Lin, Boqiang & Huang, Chenchen, 2023. "Nonlinear relationship between digitization and energy efficiency: Evidence from transnational panel data," Energy, Elsevier, vol. 276(C).
    3. Jia, Shanghui & Chen, Xinhui & Jin, Jiayu, 2024. "Digital disruption and energy efficiency: The impact of regional digitalization on China's industrial sector," Energy, Elsevier, vol. 300(C).
    4. Zhu, Minglei & Huang, Haiyan & Ma, Weiwen, 2023. "Transformation of natural resource use: Moving towards sustainability through ICT-based improvements in green total factor energy efficiency," Resources Policy, Elsevier, vol. 80(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Filipe Soares & André Madureira & Andreu Pagès & António Barbosa & António Coelho & Fernando Cassola & Fernando Ribeiro & João Viana & José Andrade & Marina Dorokhova & Nélson Morais & Nicolas Wyrsch , 2021. "FEEdBACk: An ICT-Based Platform to Increase Energy Efficiency through Buildings’ Consumer Engagement," Energies, MDPI, vol. 14(6), pages 1-43, March.
    2. Elnour, Mariam & Fadli, Fodil & Himeur, Yassine & Petri, Ioan & Rezgui, Yacine & Meskin, Nader & Ahmad, Ahmad M., 2022. "Performance and energy optimization of building automation and management systems: Towards smart sustainable carbon-neutral sports facilities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    3. Kiguchi, Y. & Weeks, M. & Arakawa, R., 2021. "Predicting winners and losers under time-of-use tariffs using smart meter data," Energy, Elsevier, vol. 236(C).
    4. Sherif Goubran & Carmela Cucuzzella & Mohamed M. Ouf, 2021. "Eyes on the Goal! Exploring Interactive Artistic Real-Time Energy Interfaces for Target-Specific Actions in the Built Environment," Sustainability, MDPI, vol. 13(4), pages 1-17, February.
    5. Panagiotis Michailidis & Iakovos Michailidis & Dimitrios Vamvakas & Elias Kosmatopoulos, 2023. "Model-Free HVAC Control in Buildings: A Review," Energies, MDPI, vol. 16(20), pages 1-45, October.
    6. Todd D. Gerarden & Richard G. Newell & Robert N. Stavins, 2017. "Assessing the Energy-Efficiency Gap," Journal of Economic Literature, American Economic Association, vol. 55(4), pages 1486-1525, December.
    7. Schleich, Joachim & Faure, Corinne & Guetlein, Marie-Charlotte & Tu, Gengyang, 2020. "Conveyance, envy, and homeowner choice of appliances," Energy Economics, Elsevier, vol. 89(C).
    8. Fischbacher, Urs & Schudy, Simeon & Teyssier, Sabrina, 2021. "Heterogeneous preferences and investments in energy saving measures," Resource and Energy Economics, Elsevier, vol. 63(C).
    9. Juana Isabel Méndez & Adán Medina & Pedro Ponce & Therese Peffer & Alan Meier & Arturo Molina, 2022. "Evolving Gamified Smart Communities in Mexico to Save Energy in Communities through Intelligent Interfaces," Energies, MDPI, vol. 15(15), pages 1-29, July.
    10. Xu, Xiaojing & Chen, Chien-fei, 2019. "Energy efficiency and energy justice for U.S. low-income households: An analysis of multifaceted challenges and potential," Energy Policy, Elsevier, vol. 128(C), pages 763-774.
    11. Nitsch, Felix & Deissenroth-Uhrig, Marc & Schimeczek, Christoph & Bertsch, Valentin, 2021. "Economic evaluation of battery storage systems bidding on day-ahead and automatic frequency restoration reserves markets," Applied Energy, Elsevier, vol. 298(C).
    12. Huse, Cristian & Lucinda, Claudio & Cardoso, Andre Ribeiro, 2020. "Consumer response to energy label policies: Evidence from the Brazilian energy label program," Energy Policy, Elsevier, vol. 138(C).
    13. Belaïd, Fateh & Joumni, Haitham, 2020. "Behavioral attitudes towards energy saving: Empirical evidence from France," Energy Policy, Elsevier, vol. 140(C).
    14. Fleckinger, Pierre & Glachant, Matthieu & Tamokoué Kamga, Paul-Hervé, 2019. "Energy Performance Certificates and investments in building energy efficiency: A theoretical analysis," Energy Economics, Elsevier, vol. 84(S1).
    15. Cédric Clastres & Olivier Rebenaque & Patrick Jochem, 2020. "Provision of Demand Response from the prosumers in multiple markets," Working Papers 2008, Chaire Economie du climat.
    16. Spurlock, C. Anna & Fujita, K. Sydny, 2022. "Equity implications of market structure and appliance energy efficiency regulation," Energy Policy, Elsevier, vol. 165(C).
    17. Hendrik Schmitz & Reinhard Madlener, 2020. "Heterogeneity in price responsiveness for residential space heating in Germany," Empirical Economics, Springer, vol. 59(5), pages 2255-2281, November.
    18. Schleich, Joachim & Gassmann, Xavier & Faure, Corinne & Meissner, Thomas, 2016. "Making the implicit explicit: A look inside the implicit discount rate," Energy Policy, Elsevier, vol. 97(C), pages 321-331.
    19. Heutel, Garth, 2019. "Prospect theory and energy efficiency," Journal of Environmental Economics and Management, Elsevier, vol. 96(C), pages 236-254.
    20. Donovan Platt, 2022. "Bayesian Estimation of Economic Simulation Models Using Neural Networks," Computational Economics, Springer;Society for Computational Economics, vol. 59(2), pages 599-650, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:9:p:2416-:d:542142. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.