IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i7p2011-d530511.html
   My bibliography  Save this article

Hamiltonian Modeling and Structure Modified Control of Diesel Engine

Author

Listed:
  • Jing Qian

    (Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China)

  • Yakun Guo

    (School of Engineering, University of Bradford, Bradford BD7 1DP, UK)

  • Yidong Zou

    (Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China)

  • Shige Yu

    (Department of Engineering Mechanics, Kunming University of Science and Technology, Kunming 650500, China)

Abstract

A diesel engine is a typical dynamic system. In this paper, a dynamics method is proposed to establish the Hamiltonian model of the diesel engine, which solves the main difficulty of constructing a Hamiltonian function under the multi-field coupling condition. Furthermore, the control method of Hamiltonian model structure modification is introduced to study the control of a diesel engine. By means of the principle of energy-shaping and Hamiltonian model structure modification theories, the modified energy function is constructed, which is proved to be a quasi-Lyapunov function of the closed-loop system. Finally, the control laws are derived, and the simulations are carried out. The study reveals the dynamic mechanism of diesel engine operation and control and provides a new way to research the modeling and control of a diesel engine system.

Suggested Citation

  • Jing Qian & Yakun Guo & Yidong Zou & Shige Yu, 2021. "Hamiltonian Modeling and Structure Modified Control of Diesel Engine," Energies, MDPI, vol. 14(7), pages 1-13, April.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:7:p:2011-:d:530511
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/7/2011/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/7/2011/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Malik, Anam & Ravishankar, Jayashri, 2018. "A hybrid control approach for regulating frequency through demand response," Applied Energy, Elsevier, vol. 210(C), pages 1347-1362.
    2. Rafael Sebastián & Rafael Peña-Alzola, 2020. "Flywheel Energy Storage and Dump Load to Control the Active Power Excess in a Wind Diesel Power System," Energies, MDPI, vol. 13(8), pages 1-15, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Harri Aaltonen & Seppo Sierla & Rakshith Subramanya & Valeriy Vyatkin, 2021. "A Simulation Environment for Training a Reinforcement Learning Agent Trading a Battery Storage," Energies, MDPI, vol. 14(17), pages 1-20, September.
    2. Cheng, Yi & Azizipanah-Abarghooee, Rasoul & Azizi, Sadegh & Ding, Lei & Terzija, Vladimir, 2020. "Smart frequency control in low inertia energy systems based on frequency response techniques: A review," Applied Energy, Elsevier, vol. 279(C).
    3. Tang, Yi & Li, Feng & Chen, Qian & Li, Mengya & Wang, Qi & Ni, Ming & Chen, Gang, 2018. "Frequency prediction method considering demand response aggregate characteristics and control effects," Applied Energy, Elsevier, vol. 229(C), pages 936-944.
    4. Attya, A.B. & Anaya-Lara, O. & Leithead, W.E., 2018. "Novel concept of renewables association with synchronous generation for enhancing the provision of ancillary services," Applied Energy, Elsevier, vol. 229(C), pages 1035-1047.
    5. Wyman-Pain, Heather & Bian, Yuankai & Thomas, Cain & Li, Furong, 2018. "The economics of different generation technologies for frequency response provision," Applied Energy, Elsevier, vol. 222(C), pages 554-563.
    6. Wang, Huilong & Wang, Shengwei & Tang, Rui, 2019. "Development of grid-responsive buildings: Opportunities, challenges, capabilities and applications of HVAC systems in non-residential buildings in providing ancillary services by fast demand responses," Applied Energy, Elsevier, vol. 250(C), pages 697-712.
    7. Al kez, Dlzar & Foley, Aoife M. & McIlwaine, Neil & Morrow, D. John & Hayes, Barry P. & Zehir, M. Alparslan & Mehigan, Laura & Papari, Behnaz & Edrington, Chris S. & Baran, Mesut, 2020. "A critical evaluation of grid stability and codes, energy storage and smart loads in power systems with wind generation," Energy, Elsevier, vol. 205(C).
    8. Bomela, Walter & Zlotnik, Anatoly & Li, Jr-Shin, 2018. "A phase model approach for thermostatically controlled load demand response," Applied Energy, Elsevier, vol. 228(C), pages 667-680.
    9. Tanima Bal & Saheli Ray & Nidul Sinha & Ramesh Devarapalli & Łukasz Knypiński, 2023. "Integrating Demand Response for Enhanced Load Frequency Control in Micro-Grids with Heating, Ventilation and Air-Conditioning Systems," Energies, MDPI, vol. 16(15), pages 1-23, August.
    10. Zeng, Yuan & Zhang, Ruiwen & Wang, Dong & Mu, Yunfei & Jia, Hongjie, 2019. "A regional power grid operation and planning method considering renewable energy generation and load control," Applied Energy, Elsevier, vol. 237(C), pages 304-313.
    11. Ziba Rostami & Sajad Najafi Ravadanegh & Navid Taghizadegan Kalantari & Josep M. Guerrero & Juan C. Vasquez, 2020. "Dynamic Modeling of Multiple Microgrid Clusters Using Regional Demand Response Programs," Energies, MDPI, vol. 13(16), pages 1-19, August.
    12. Taheri Tehrani, Mohammad & Afshin Hemmatyar, Ali Mohammad, 2019. "Welfare-aware strategic demand control in an intelligent market-based framework: Move towards sustainable smart grid," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    13. Barbero, Mattia & Casals, Lluc Canals & Corchero, Cristina, 2020. "Comparison between economic and environmental drivers for demand side aggregator," Utilities Policy, Elsevier, vol. 65(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:7:p:2011-:d:530511. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.