IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i7p1823-d523710.html
   My bibliography  Save this article

A Low Power AC/DC Interface for Wind-Powered Sensor Nodes

Author

Listed:
  • Mohammad Haidar

    (Cosmic Lab, DITEN, University of Genoa, 16145 Genoa, Italy
    MECRL Lab, EDST, Lebanese University, BadaroBeirut P.O. Box 6573/14, Lebanon)

  • Hussein Chible

    (MECRL Lab, EDST, Lebanese University, BadaroBeirut P.O. Box 6573/14, Lebanon)

  • Corrado Boragno

    (Department of Physics (DIFI), University of Genoa, 16146 Genoa, Italy)

  • Daniele D. Caviglia

    (Cosmic Lab, DITEN, University of Genoa, 16145 Genoa, Italy)

Abstract

Sensor nodes have been assigned a lot of tasks in a connected environment that is growing rapidly. The power supply remains a challenge that is not answered convincingly. Energy harvesting is an emerging solution that is being studied to integrate in low power applications such as internet of things (IoT) and wireless sensor networks (WSN). In this work an interface circuit for a novel fluttering wind energy harvester is presented. The system consists of a switching converter controlled by a low power microcontroller. Optimization techniques on the hardware and software level have been implemented, and a prototype is developed for testing. Experiments have been done with generated input signals resulting in up to 67% efficiency for a constant voltage input. Other experiments were conducted in a wind tunnel that showed a transient output that is compatible with the target applications.

Suggested Citation

  • Mohammad Haidar & Hussein Chible & Corrado Boragno & Daniele D. Caviglia, 2021. "A Low Power AC/DC Interface for Wind-Powered Sensor Nodes," Energies, MDPI, vol. 14(7), pages 1-14, March.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:7:p:1823-:d:523710
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/7/1823/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/7/1823/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kumar, Dipesh & Chatterjee, Kalyan, 2016. "A review of conventional and advanced MPPT algorithms for wind energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 957-970.
    2. Ching-Ming Lai & Yu-Huei Cheng & Jiashen Teh & Yuan-Chih Lin, 2017. "A New Combined Boost Converter with Improved Voltage Gain as a Battery-Powered Front-End Interface for Automotive Audio Amplifiers," Energies, MDPI, vol. 10(8), pages 1-20, August.
    3. Aubrée, René & Auger, François & Macé, Michel & Loron, Luc, 2016. "Design of an efficient small wind-energy conversion system with an adaptive sensorless MPPT strategy," Renewable Energy, Elsevier, vol. 86(C), pages 280-291.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Younes Azelhak & Loubna Benaaouinate & Hicham Medromi & Youssef Errami & Tarik Bouragba & Damien Voyer, 2021. "Exhaustive Comparison between Linear and Nonlinear Approaches for Grid-Side Control of Wind Energy Conversion Systems," Energies, MDPI, vol. 14(13), pages 1-20, July.
    2. Fathabadi, Hassan, 2016. "Novel high-efficient unified maximum power point tracking controller for hybrid fuel cell/wind systems," Applied Energy, Elsevier, vol. 183(C), pages 1498-1510.
    3. Fathabadi, Hassan, 2017. "Novel standalone hybrid solar/wind/fuel cell/battery power generation system," Energy, Elsevier, vol. 140(P1), pages 454-465.
    4. Hassan M. H. Farh & Mohd F. Othman & Ali M. Eltamaly & M. S. Al-Saud, 2018. "Maximum Power Extraction from a Partially Shaded PV System Using an Interleaved Boost Converter," Energies, MDPI, vol. 11(10), pages 1-18, September.
    5. Liu, Junbo & Cai, Chang & Song, Dongran & Zhong, Xiaohui & Shi, Kezhong & Chen, Yinpeng & Cheng, Shijie & Huang, Yupian & Jiang, Xue & Li, Qing'an, 2024. "Nonlinear model predictive control for maximum wind energy extraction of semi-submersible floating offshore wind turbine based on simplified dynamics model," Energy, Elsevier, vol. 311(C).
    6. Tania García-Sánchez & Arbinda Kumar Mishra & Elías Hurtado-Pérez & Rubén Puché-Panadero & Ana Fernández-Guillamón, 2020. "A Controller for Optimum Electrical Power Extraction from a Small Grid-Interconnected Wind Turbine," Energies, MDPI, vol. 13(21), pages 1-16, November.
    7. Arshdeep Singh & Shimi Sudha Letha, 2019. "Emerging energy sources for electric vehicle charging station," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 21(5), pages 2043-2082, October.
    8. Tai Li & Yanbo Wang & Sunan Sun & Huimin Qian & Leqiu Wang & Lei Wang & Yanxia Shen & Zhicheng Ji, 2023. "Fuzzy Active Disturbance Rejection-Based Virtual Inertia Control Strategy for Wind Farms," Energies, MDPI, vol. 16(10), pages 1-16, May.
    9. Zhicheng Lin & Song Zheng & Zhicheng Chen & Rong Zheng & Wang Zhang, 2019. "Application Research of the Parallel System Theory and the Data Engine Approach in Wind Energy Conversion System," Energies, MDPI, vol. 12(5), pages 1-20, March.
    10. Amira Elkodama & Amr Ismaiel & A. Abdellatif & S. Shaaban & Shigeo Yoshida & Mostafa A. Rushdi, 2023. "Control Methods for Horizontal Axis Wind Turbines (HAWT): State-of-the-Art Review," Energies, MDPI, vol. 16(17), pages 1-32, September.
    11. Dongran Song & Jian Yang & Mei Su & Anfeng Liu & Yao Liu & Young Hoon Joo, 2017. "A Comparison Study between Two MPPT Control Methods for a Large Variable-Speed Wind Turbine under Different Wind Speed Characteristics," Energies, MDPI, vol. 10(5), pages 1-18, May.
    12. Tiara Freitas & João Caliman & Paulo Menegáz & Walbermark dos Santos & Domingos Simonetti, 2021. "A DCM Single-Controlled Three-Phase SEPIC-Type Rectifier," Energies, MDPI, vol. 14(2), pages 1-16, January.
    13. Ganesh Mayilsamy & Balasubramani Natesan & Young Hoon Joo & Seong Ryong Lee, 2022. "Fast Terminal Synergetic Control of PMVG-Based Wind Energy Conversion System for Enhancing the Power Extraction Efficiency," Energies, MDPI, vol. 15(8), pages 1-22, April.
    14. Matheus Schramm Dall’Asta & Telles Brunelli Lazzarin, 2024. "A Review of Fast Power-Reserve Control Techniques in Grid-Connected Wind Energy Conversion Systems," Energies, MDPI, vol. 17(2), pages 1-29, January.
    15. Prévost, Adrien & Demichel, François & Léchappé, Vincent & Helbling, Hugo & Delpoux, Romain & Brun, Xavier, 2025. "A framework for technico-environmental optimization of small wind turbines," Applied Energy, Elsevier, vol. 377(PC).
    16. Vasudevan, Krishnakumar R. & Ramachandaramurthy, Vigna K. & Venugopal, Gomathi & Ekanayake, J.B. & Tiong, S.K., 2021. "Variable speed pumped hydro storage: A review of converters, controls and energy management strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    17. Karabacak, Murat, 2019. "A new perturb and observe based higher order sliding mode MPPT control of wind turbines eliminating the rotor inertial effect," Renewable Energy, Elsevier, vol. 133(C), pages 807-827.
    18. Bodha, Venugopal Reddy & Srujana, A. & Chandrashekar, O., 2018. "A modified H-bridge voltage source converter with Fault Ride Capability," Energy, Elsevier, vol. 165(PB), pages 1380-1391.
    19. Wollz, Danilo Henrique & da Silva, Sergio Augusto Oliveira & Sampaio, Leonardo Poltronieri, 2020. "Real-time monitoring of an electronic wind turbine emulator based on the dynamic PMSG model using a graphical interface," Renewable Energy, Elsevier, vol. 155(C), pages 296-308.
    20. Ram, J.Prasanth & Rajasekar, N. & Miyatake, Masafumi, 2017. "Design and overview of maximum power point tracking techniques in wind and solar photovoltaic systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1138-1159.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:7:p:1823-:d:523710. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.