IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i5p1466-d512723.html
   My bibliography  Save this article

Dynamic Process Analysis and Voltage Stabilization Control of Multi-Load Wireless Power Supply System

Author

Listed:
  • Shujing Fan

    (School of Electrical Engineering, Shandong University, Jinan 250061, China)

  • Zhizhen Liu

    (School of Electrical Engineering, Shandong University, Jinan 250061, China)

  • Guowen Feng

    (School of Electrical Engineering, Shandong University, Jinan 250061, China)

  • Naghmash Ali

    (School of Electrical Engineering, Shandong University, Jinan 250061, China)

  • Yanjin Hou

    (Shandong Provincial Key Laboratory of Biomass Gasification Technology, Energy Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China)

Abstract

At present, wireless power supply technology has gradually attracted people’s attention due to its safety, convenience, and portability. It has become one of the development trends of power supply for future technologies such as electric vehicles. In many engineering applications, inductive wireless power supply systems need to supply power to multiple loads at the same time. Therefore, it is necessary to analyze the dynamic process of the multiload system. This paper first selects the optimal compensation network according to the stable operating conditions of the multiload system. Secondly, in order to classify and describe the movement state of the load in the dynamic process, the simulation model is established on the MATLAB/SIMULINK platform to analyze the influence of the mutual inductance or resistance of any load on the output characteristics of the primary system and other loads. Then, in order to solve the problem of unstable output voltage used by multiple loads entering the same track at the same time or load resistance changes, this paper adopts a secondary side control strategy. The duty cycle of the Buck circuit is adjusted by the fixed frequency PWM sliding mode controller (PWMSMC), so as to realize the independent control of each load. Finally, an experimental platform was established to verify the correctness of the theoretical analysis.

Suggested Citation

  • Shujing Fan & Zhizhen Liu & Guowen Feng & Naghmash Ali & Yanjin Hou, 2021. "Dynamic Process Analysis and Voltage Stabilization Control of Multi-Load Wireless Power Supply System," Energies, MDPI, vol. 14(5), pages 1-18, March.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:5:p:1466-:d:512723
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/5/1466/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/5/1466/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Naghmash Ali & Zhizhen Liu & Yanjin Hou & Hammad Armghan & Xiaozhao Wei & Ammar Armghan, 2020. "LCC-S Based Discrete Fast Terminal Sliding Mode Controller for Efficient Charging through Wireless Power Transfer," Energies, MDPI, vol. 13(6), pages 1-18, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yashar Mousavi & Geraint Bevan & Ibrahim Beklan Küçükdemiral & Afef Fekih, 2021. "Maximum Power Extraction from Wind Turbines Using a Fault-Tolerant Fractional-Order Nonsingular Terminal Sliding Mode Controller," Energies, MDPI, vol. 14(18), pages 1-16, September.
    2. Naghmash Ali & Zhizhen Liu & Hammad Armghan & Iftikhar Ahmad & Yanjin Hou, 2021. "LCC-S-Based Integral Terminal Sliding Mode Controller for a Hybrid Energy Storage System Using a Wireless Power System," Energies, MDPI, vol. 14(6), pages 1-25, March.
    3. Lu Zhang & Huan Li & Qiang Guo & Shiyun Xie & Yi Yang, 2022. "Research on Constant Voltage/Current Output of LCC–S Envelope Modulation Wireless Power Transfer System," Energies, MDPI, vol. 15(4), pages 1-16, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:5:p:1466-:d:512723. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.