IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i4p975-d498484.html
   My bibliography  Save this article

Estimation of Self-Sufficiency Rate in Detached Houses Using Home Energy Management System Data

Author

Listed:
  • Masato Oota

    (Sekisui Chemical Co., Ltd., Tokyo 186-0007, Japan)

  • Yumiko Iwafune

    (Institute of Industrial Science, University of Tokyo, Tokyo 153-8505, Japan)

  • Ryozo Ooka

    (Institute of Industrial Science, University of Tokyo, Tokyo 153-8505, Japan)

Abstract

Japan’s energy consumption in 2018 was about 2.5 times that in 1975, with the increase in the household sector being the largest at 28%. Most of primary energy is still fossil fuel, and it is urgent to reduce energy consumption in the household sector. The purpose of this paper was to identify ways to reduce household energy consumption without compromising the quality of life in residence. However, the reduction methods vary by region, building specifications, household type, equipment specifications, season, and weather. The value of this paper is based on a systematic analysis of home energy management systems (HEMS) data from about 50,000 households under various conditions. We are analyzing ways to reduce energy consumption. Few studies have analyzed this much back-up data, which is likely to lead to a reduction in CO 2 emissions across the household sector. To explore ways to reduce energy consumption in this sector, the company has introduced and provided services for home energy management systems (HEMS) since 2011 and is currently collecting HEMS data for up to 50,000 households. In order to grasp the actual state of energy consumption in each household, HEMS data are systematically analyzed, necessary conditions for energy reduction and self-sufficiency rate ( SSR ) improvement are analyzed, and energy consumption under certain conditions is estimated using storage batteries (SB) and heat pump water heaters (HPWH). In addition, energy consumption was investigated by actual measurement and simulation for several hundred households. Since power generation and consumption vary greatly depending on the region, building specifications, household type, equipment specifications, season, weather, etc., it is necessary to analyze these factors systematically. As a conclusion, in order to improve SSR , it is necessary to (1) reduce surplus power consumption and energy consumption of heat pump water heaters (HPWHs), (2) increase solar power generation, and (3) increase the size of SB. This study contributes to the spread of advanced housing and the reduction of CO 2 emissions in the household sector.

Suggested Citation

  • Masato Oota & Yumiko Iwafune & Ryozo Ooka, 2021. "Estimation of Self-Sufficiency Rate in Detached Houses Using Home Energy Management System Data," Energies, MDPI, vol. 14(4), pages 1-21, February.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:4:p:975-:d:498484
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/4/975/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/4/975/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. van der Stelt, Sander & AlSkaif, Tarek & van Sark, Wilfried, 2018. "Techno-economic analysis of household and community energy storage for residential prosumers with smart appliances," Applied Energy, Elsevier, vol. 209(C), pages 266-276.
    2. Leonard, Matthew D. & Michaelides, Efstathios E., 2018. "Grid-independent residential buildings with renewable energy sources," Energy, Elsevier, vol. 148(C), pages 448-460.
    3. Vieira, Filomeno M. & Moura, Pedro S. & de Almeida, Aníbal T., 2017. "Energy storage system for self-consumption of photovoltaic energy in residential zero energy buildings," Renewable Energy, Elsevier, vol. 103(C), pages 308-320.
    4. Luthander, Rasmus & Widén, Joakim & Nilsson, Daniel & Palm, Jenny, 2015. "Photovoltaic self-consumption in buildings: A review," Applied Energy, Elsevier, vol. 142(C), pages 80-94.
    5. Luthander, Rasmus & Widén, Joakim & Munkhammar, Joakim & Lingfors, David, 2016. "Self-consumption enhancement and peak shaving of residential photovoltaics using storage and curtailment," Energy, Elsevier, vol. 112(C), pages 221-231.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Łukasz Mazur & Sławomir Cieślik & Stanislaw Czapp, 2023. "Trends in Locally Balanced Energy Systems without the Use of Fossil Fuels: A Review," Energies, MDPI, vol. 16(12), pages 1-31, June.
    2. Paweł Dworak & Andrzej Mrozik & Agata Korzelecka-Orkisz & Adam Tański & Krzysztof Formicki, 2023. "Energy Self-Sufficiency of a Salmonids Breeding Facility in the Recirculating Aquaculture System," Energies, MDPI, vol. 16(6), pages 1-22, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luthander, Rasmus & Nilsson, Annica M. & Widén, Joakim & Åberg, Magnus, 2019. "Graphical analysis of photovoltaic generation and load matching in buildings: A novel way of studying self-consumption and self-sufficiency," Applied Energy, Elsevier, vol. 250(C), pages 748-759.
    2. Korjani, Saman & Casu, Fabio & Damiano, Alfonso & Pilloni, Virginia & Serpi, Alessandro, 2022. "An online energy management tool for sizing integrated PV-BESS systems for residential prosumers," Applied Energy, Elsevier, vol. 313(C).
    3. Roberts, Mike B. & Bruce, Anna & MacGill, Iain, 2019. "Impact of shared battery energy storage systems on photovoltaic self-consumption and electricity bills in apartment buildings," Applied Energy, Elsevier, vol. 245(C), pages 78-95.
    4. Zhang, Yijie & Ma, Tao & Yang, Hongxing, 2022. "Grid-connected photovoltaic battery systems: A comprehensive review and perspectives," Applied Energy, Elsevier, vol. 328(C).
    5. Muñoz-Rodríguez, Francisco José & Jiménez-Castillo, Gabino & de la Casa Hernández, Jesús & Aguilar Peña, Juan Domingo, 2021. "A new tool to analysing photovoltaic self-consumption systems with batteries," Renewable Energy, Elsevier, vol. 168(C), pages 1327-1343.
    6. Federica Cucchiella & Idiano D’Adamo & Massimo Gastaldi & Vincenzo Stornelli, 2018. "Solar Photovoltaic Panels Combined with Energy Storage in a Residential Building: An Economic Analysis," Sustainability, MDPI, vol. 10(9), pages 1-29, August.
    7. von Appen, J. & Braun, M., 2018. "Interdependencies between self-sufficiency preferences, techno-economic drivers for investment decisions and grid integration of residential PV storage systems," Applied Energy, Elsevier, vol. 229(C), pages 1140-1151.
    8. Klein, Martin & Deissenroth, Marc, 2017. "When do households invest in solar photovoltaics? An application of prospect theory," Energy Policy, Elsevier, vol. 109(C), pages 270-278.
    9. Shi, Mengshu & Huang, Yuansheng & Lin, Hongyu, 2023. "Research on power to hydrogen optimization and profit distribution of microgrid cluster considering shared hydrogen storage," Energy, Elsevier, vol. 264(C).
    10. Klamka, Jonas & Wolf, André & Ehrlich, Lars G., 2020. "Photovoltaic self-consumption after the support period: Will it pay off in a cross-sector perspective?," Renewable Energy, Elsevier, vol. 147(P1), pages 2374-2386.
    11. D'Adamo, Idiano & Gastaldi, Massimo & Morone, Piergiuseppe & Ozturk, Ilhan, 2022. "Economics and policy implications of residential photovoltaic systems in Italy's developed market," Utilities Policy, Elsevier, vol. 79(C).
    12. Vladimir Z. Gjorgievski & Nikolas G. Chatzigeorgiou & Venizelos Venizelou & Georgios C. Christoforidis & George E. Georghiou & Grigoris K. Papagiannis, 2020. "Evaluation of Load Matching Indicators in Residential PV Systems-the Case of Cyprus," Energies, MDPI, vol. 13(8), pages 1-18, April.
    13. Schopfer, S. & Tiefenbeck, V. & Staake, T., 2018. "Economic assessment of photovoltaic battery systems based on household load profiles," Applied Energy, Elsevier, vol. 223(C), pages 229-248.
    14. Jiyoung Eum & Yongki Kim, 2020. "Analysis on Operation Modes of Residential BESS with Balcony-PV for Apartment Houses in Korea," Sustainability, MDPI, vol. 13(1), pages 1-9, December.
    15. Joshua M. Pearce & Nelson Sommerfeldt, 2021. "Economics of Grid-Tied Solar Photovoltaic Systems Coupled to Heat Pumps: The Case of Northern Climates of the U.S. and Canada," Energies, MDPI, vol. 14(4), pages 1-17, February.
    16. Àlex Alonso & Jordi de la Hoz & Helena Martín & Sergio Coronas & José Matas, 2021. "Individual vs. Community: Economic Assessment of Energy Management Systems under Different Regulatory Frameworks," Energies, MDPI, vol. 14(3), pages 1-27, January.
    17. Paolo Corti & Luisa Capannolo & Pierluigi Bonomo & Pierluigi De Berardinis & Francesco Frontini, 2020. "Comparative Analysis of BIPV Solutions to Define Energy and Cost-Effectiveness in a Case Study," Energies, MDPI, vol. 13(15), pages 1-23, July.
    18. Kotarela, F. & Kyritsis, A. & Papanikolaou, N. & Kalogirou, S.A., 2021. "Enhanced nZEB concept incorporating a sustainable Grid Support Scheme," Renewable Energy, Elsevier, vol. 169(C), pages 714-725.
    19. Nousdilis, Angelos I. & Christoforidis, Georgios C. & Papagiannis, Grigoris K., 2018. "Active power management in low voltage networks with high photovoltaics penetration based on prosumers’ self-consumption," Applied Energy, Elsevier, vol. 229(C), pages 614-624.
    20. Santiago, Isabel & Palacios-Garcia, Emilio J. & Gonzalez-Redondo, Miguel & Arenas-Ramos, Victoria & Simon, Bernardo & Hayes, Barry P. & Moreno-Munoz, Antonio, 2024. "Assessment of generation capacity and economic viability of photovoltaic systems on urban buildings in southern Spain: A socioeconomic, technological, and regulatory analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 203(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:4:p:975-:d:498484. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.