IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i4p965-d498013.html
   My bibliography  Save this article

Research on a Comprehensive Maintenance Optimization Strategy for an Offshore Wind Farm

Author

Listed:
  • Yang Lu

    (College of Shipbuilding Engineering, Harbin Engineering University, Harbin 150001, China)

  • Liping Sun

    (College of Shipbuilding Engineering, Harbin Engineering University, Harbin 150001, China)

  • Yanzhuo Xue

    (College of Shipbuilding Engineering, Harbin Engineering University, Harbin 150001, China)

Abstract

Offshore wind is considered a crucial part in the future energy supply. However, influenced by weather conditions, the maintenance of offshore wind turbine system (OWTs) equipment is challenged by poor accessibility and serious failure consequences. It is necessary to study the optimized strategy of comprehensive maintenance for offshore wind farms, with consideration of the influences of incomplete equipment maintenance, weather accessibility and economic relevance. In this paper, a Monte Carlo algorithm-improved factor is presented to simulate the imperfect preventive maintenance activity, and waiting windows were created to study the accessibility of weather conditions. Based on a rolling horizon approach, an opportunity group maintenance model of an offshore wind farm was proposed. The maintenance correlations between systems and between equipment as well as breakdown losses, maintenance uncertainty, and weather conditions were taken into account in the model, thus realizing coordination of maintenance activities of different systems and different equipment. The proposed model was applied to calculate the maintenance cost of the Dafengtian Offshore Wind Farm in China. Results proved that the proposed model could realize long-term dynamic optimization of offshore wind farm maintenance activities, increase the total availability of the wind power system and reduce total maintenance costs.

Suggested Citation

  • Yang Lu & Liping Sun & Yanzhuo Xue, 2021. "Research on a Comprehensive Maintenance Optimization Strategy for an Offshore Wind Farm," Energies, MDPI, vol. 14(4), pages 1-22, February.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:4:p:965-:d:498013
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/4/965/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/4/965/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhu, Wenjin & Castanier, Bruno & Bettayeb, Belgacem, 2019. "A dynamic programming-based maintenance model of offshore wind turbine considering logistic delay and weather condition," Reliability Engineering and System Safety, Elsevier, vol. 190(C), pages 1-1.
    2. Shafiee, Mahmood, 2015. "Maintenance logistics organization for offshore wind energy: Current progress and future perspectives," Renewable Energy, Elsevier, vol. 77(C), pages 182-193.
    3. Ding, Fangfang & Tian, Zhigang, 2012. "Opportunistic maintenance for wind farms considering multi-level imperfect maintenance thresholds," Renewable Energy, Elsevier, vol. 45(C), pages 175-182.
    4. Zhang, Chen & Gao, Wei & Guo, Sheng & Li, Youliang & Yang, Tao, 2017. "Opportunistic maintenance for wind turbines considering imperfect, reliability-based maintenance," Renewable Energy, Elsevier, vol. 103(C), pages 606-612.
    5. Laura, Castro-Santos & Vicente, Diaz-Casas, 2014. "Life-cycle cost analysis of floating offshore wind farms," Renewable Energy, Elsevier, vol. 66(C), pages 41-48.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liang Cui & Ye Xu & Ling Xu & Guohe Huang, 2021. "Wind Farm Location Special Optimization Based on Grid GIS and Choquet Fuzzy Integral Method in Dalian City, China," Energies, MDPI, vol. 14(9), pages 1-13, April.
    2. Finn Gunnar Nielsen, 2022. "Perspectives and Challenges Related Offshore Wind Turbines in Deep Water," Energies, MDPI, vol. 15(8), pages 1-6, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ren, Zhengru & Verma, Amrit Shankar & Li, Ye & Teuwen, Julie J.E. & Jiang, Zhiyu, 2021. "Offshore wind turbine operations and maintenance: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    2. McMorland, J. & Collu, M. & McMillan, D. & Carroll, J. & Coraddu, A., 2023. "Opportunistic maintenance for offshore wind: A review and proposal of future framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    3. Nguyen, Thi-Anh-Tuyet & Chou, Shuo-Yan & Yu, Tiffany Hui-Kuang, 2022. "Developing an exhaustive optimal maintenance schedule for offshore wind turbines based on risk-assessment, technical factors and cost-effective evaluation," Energy, Elsevier, vol. 249(C).
    4. Shuo-Yan Chou & Xuan Loc Pham & Thi Anh Tuyet Nguyen & Tiffany Hui-Kuang Yu, 2023. "Optimal maintenance planning with special emphasis on deterioration process and vessel routing for offshore wind systems," Energy & Environment, , vol. 34(4), pages 739-763, June.
    5. Sarker, Bhaba R. & Faiz, Tasnim Ibn, 2016. "Minimizing maintenance cost for offshore wind turbines following multi-level opportunistic preventive strategy," Renewable Energy, Elsevier, vol. 85(C), pages 104-113.
    6. Li, Mingxin & Jiang, Xiaoli & Carroll, James & Negenborn, Rudy R., 2022. "A multi-objective maintenance strategy optimization framework for offshore wind farms considering uncertainty," Applied Energy, Elsevier, vol. 321(C).
    7. Vu, Hai Canh & Do, Phuc & Fouladirad, Mitra & Grall, Antoine, 2020. "Dynamic opportunistic maintenance planning for multi-component redundant systems with various types of opportunities," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    8. Zhang, Chen & Gao, Wei & Yang, Tao & Guo, Sheng, 2019. "Opportunistic maintenance strategy for wind turbines considering weather conditions and spare parts inventory management," Renewable Energy, Elsevier, vol. 133(C), pages 703-711.
    9. Li, Mingxin & Jiang, Xiaoli & Carroll, James & Negenborn, Rudy R., 2023. "A closed-loop maintenance strategy for offshore wind farms: Incorporating dynamic wind farm states and uncertainty-awareness in decision-making," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    10. Nguyen, Thi Anh Tuyet & Chou, Shuo-Yan, 2019. "Improved maintenance optimization of offshore wind systems considering effects of government subsidies, lost production and discounted cost model," Energy, Elsevier, vol. 187(C).
    11. Abdollahzadeh, Hadi & Atashgar, Karim & Abbasi, Morteza, 2016. "Multi-objective opportunistic maintenance optimization of a wind farm considering limited number of maintenance groups," Renewable Energy, Elsevier, vol. 88(C), pages 247-261.
    12. Yu-Chung Tsao & Thuy-Linh Vu, 2023. "Electricity pricing, capacity, and predictive maintenance considering reliability," Annals of Operations Research, Springer, vol. 322(2), pages 991-1011, March.
    13. Juan Izquierdo & Adolfo Crespo Márquez & Jone Uribetxebarria & Asier Erguido, 2019. "Framework for Managing Maintenance of Wind Farms Based on a Clustering Approach and Dynamic Opportunistic Maintenance," Energies, MDPI, vol. 12(11), pages 1-17, May.
    14. Lubing Xie & Xiaoming Rui & Shuai Li & Xin Hu, 2019. "Maintenance Optimization of Offshore Wind Turbines Based on an Opportunistic Maintenance Strategy," Energies, MDPI, vol. 12(14), pages 1-26, July.
    15. Wu, Tianyi & Yang, Li & Ma, Xiaobing & Zhang, Zihan & Zhao, Yu, 2020. "Dynamic maintenance strategy with iteratively updated group information," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    16. Pliego Marugán, Alberto & García Márquez, Fausto Pedro & Pinar Pérez, Jesús María, 2022. "A techno-economic model for avoiding conflicts of interest between owners of offshore wind farms and maintenance suppliers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    17. Centeno-Telleria, Manu & Aizpurua, Jose Ignacio & Penalba, Markel, 2023. "Computationally efficient analytical O&M model for strategic decision-making in offshore renewable energy systems," Energy, Elsevier, vol. 285(C).
    18. Erguido, A. & Crespo Márquez, A. & Castellano, E. & Gómez Fernández, J.F., 2017. "A dynamic opportunistic maintenance model to maximize energy-based availability while reducing the life cycle cost of wind farms," Renewable Energy, Elsevier, vol. 114(PB), pages 843-856.
    19. Shafiee, Mahmood & Sørensen, John Dalsgaard, 2019. "Maintenance optimization and inspection planning of wind energy assets: Models, methods and strategies," Reliability Engineering and System Safety, Elsevier, vol. 192(C).
    20. Yuri Merizalde & Luis Hernández-Callejo & Oscar Duque-Perez & Víctor Alonso-Gómez, 2019. "Maintenance Models Applied to Wind Turbines. A Comprehensive Overview," Energies, MDPI, vol. 12(2), pages 1-41, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:4:p:965-:d:498013. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.