IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i4p954-d497759.html
   My bibliography  Save this article

A Robust Nonlinear Controller for PMSG Wind Turbines

Author

Listed:
  • Nicholas Hawkins

    (Engineering Fundamentals, University of Louisville, Louisville, KY 40292, USA)

  • Michael L. McIntyre

    (Electrical and Computer Engineering, University of Louisville, Louisville, KY 40292, USA)

Abstract

In this paper, a nonlinear backstepping controller is proposed to manage the performance of a full-variable permanent magnet synchronous generator wind turbine. This nonlinear controller achieves a rotational speed objective for the generator and is validated through Lyapunov-based stability analysis. Additionally, this objective is accomplished without a measurement for wind speed that influences the wind torque. The proposed scheme is compared to a typical linear controller through simulation results. Simulation tests are performed to compare the response time and average error of each controller in both a drastic and realistic dynamic wind environment. These results demonstrate that the proposed controller is far more robust to wind turbulence than traditional control schemes. The simulation results of this study indicate a 1000% increase in response time and 3000% decrease in average controller error.

Suggested Citation

  • Nicholas Hawkins & Michael L. McIntyre, 2021. "A Robust Nonlinear Controller for PMSG Wind Turbines," Energies, MDPI, vol. 14(4), pages 1-17, February.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:4:p:954-:d:497759
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/4/954/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/4/954/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Youjie Ma & Long Tao & Xuesong Zhou & Wei Li & Xueqi Shi, 2019. "Analysis and Control of Wind Power Grid Integration Based on a Permanent Magnet Synchronous Generator Using a Fuzzy Logic System with Linear Extended State Observer," Energies, MDPI, vol. 12(15), pages 1-19, July.
    2. Sung-Won Lee & Kwan-Ho Chun, 2019. "Adaptive Sliding Mode Control for PMSG Wind Turbine Systems," Energies, MDPI, vol. 12(4), pages 1-17, February.
    3. Yuan-Chih Chang & Chi-Ting Tsai & Yong-Lin Lu, 2019. "Current Control of the Permanent-Magnet Synchronous Generator Using Interval Type-2 T-S Fuzzy Systems," Energies, MDPI, vol. 12(15), pages 1-12, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hemant Ahuja & Arika Singh & Sachin Sharma & Gulshan Sharma & Pitshou N. Bokoro, 2022. "Coordinated Control of Wind Energy Conversion System during Unsymmetrical Fault at Grid," Energies, MDPI, vol. 15(13), pages 1-15, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Teen-Hang Meen & Wenbing Zhao & Cheng-Fu Yang, 2020. "Special Issue on Selected Papers from IEEE ICKII 2019," Energies, MDPI, vol. 13(8), pages 1-5, April.
    2. Sameh Mahjoub & Larbi Chrifi-Alaoui & Saïd Drid & Nabil Derbel, 2023. "Control and Implementation of an Energy Management Strategy for a PV–Wind–Battery Microgrid Based on an Intelligent Prediction Algorithm of Energy Production," Energies, MDPI, vol. 16(4), pages 1-26, February.
    3. Zhicheng Lin & Song Zheng & Zhicheng Chen & Rong Zheng & Wang Zhang, 2019. "Application Research of the Parallel System Theory and the Data Engine Approach in Wind Energy Conversion System," Energies, MDPI, vol. 12(5), pages 1-20, March.
    4. Youjie Ma & Faqing Zhao & Xuesong Zhou & Mao Liu & Bao Yang, 2019. "DC Side Bus Voltage Control of Wind Power Grid-Connected Inverter Based on Second-Order Linear Active Disturbance Rejection Control," Energies, MDPI, vol. 12(22), pages 1-20, November.
    5. Youjie Ma & Long Tao & Xuesong Zhou & Wei Li & Xueqi Shi, 2019. "Analysis and Control of Wind Power Grid Integration Based on a Permanent Magnet Synchronous Generator Using a Fuzzy Logic System with Linear Extended State Observer," Energies, MDPI, vol. 12(15), pages 1-19, July.
    6. Pan, Lin & Wang, Xudong, 2020. "Variable pitch control on direct-driven PMSG for offshore wind turbine using Repetitive-TS fuzzy PID control," Renewable Energy, Elsevier, vol. 159(C), pages 221-237.
    7. Shiref A. Abdalla & Shahrum S. Abdullah, 2019. "Performance Improvements of Induction Motor Drive Supplied by Hybrid Wind and Storage Generation System Based on Mine Blast Algorithm," Energies, MDPI, vol. 12(15), pages 1-17, July.
    8. Mojtaba Nasiri & Saleh Mobayen & Behdad Faridpak & Afef Fekih & Arthur Chang, 2020. "Small-Signal Modeling of PMSG-Based Wind Turbine for Low Voltage Ride-Through and Artificial Intelligent Studies," Energies, MDPI, vol. 13(24), pages 1-18, December.
    9. Zhonglin Lin & Qingyan Wei & Runmin Ji & Xianghua Huang & Yuan Yuan & Zhiwen Zhao, 2019. "An Electro-Pneumatic Force Tracking System using Fuzzy Logic Based Volume Flow Control," Energies, MDPI, vol. 12(20), pages 1-21, October.
    10. Kenneth E. Okedu & S. M. Muyeen, 2022. "Comparative Performance of DFIG and PMSG Wind Turbines during Transient State in Weak and Strong Grid Conditions Considering Series Dynamic Braking Resistor," Energies, MDPI, vol. 15(23), pages 1-22, December.
    11. Walter Gil-González & Oscar Danilo Montoya & Luis Fernando Grisales-Noreña & Alberto-Jesus Perea-Moreno & Quetzalcoatl Hernandez-Escobedo, 2020. "Optimal Placement and Sizing of Wind Generators in AC Grids Considering Reactive Power Capability and Wind Speed Curves," Sustainability, MDPI, vol. 12(7), pages 1-20, April.
    12. Zholtayev, Darkhan & Rubagotti, Matteo & Do, Ton Duc, 2022. "Adaptive super-twisting sliding mode control for maximum power point tracking of PMSG-based wind energy conversion systems," Renewable Energy, Elsevier, vol. 183(C), pages 877-889.
    13. Youjie Ma & Xia Yang & Xuesong Zhou & Luyong Yang & Yongliang Zhou, 2020. "Dual Closed-Loop Linear Active Disturbance Rejection Control of Grid-Side Converter of Permanent Magnet Direct-Drive Wind Turbine," Energies, MDPI, vol. 13(5), pages 1-21, March.
    14. Marcel Nicola & Claudiu-Ionel Nicola & Dan Selișteanu, 2022. "Improvement of PMSM Sensorless Control Based on Synergetic and Sliding Mode Controllers Using a Reinforcement Learning Deep Deterministic Policy Gradient Agent," Energies, MDPI, vol. 15(6), pages 1-30, March.
    15. Kenneth E. Okedu, 2022. "Augmentation of DFIG and PMSG Wind Turbines Transient Performance Using Different Fault Current Limiters," Energies, MDPI, vol. 15(13), pages 1-25, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:4:p:954-:d:497759. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.