IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i4p921-d496642.html
   My bibliography  Save this article

Profitability of Energy Supply Contracting and Energy Sharing Concepts in a Neighborhood Energy Community: Business Cases for Austria

Author

Listed:
  • Carolin Monsberger

    (Energy Economics Group (EEG), Technische Universität Wien, Gusshausstraße 25-29, 1040 Vienna, Austria
    Center for Energy, AIT Austrian Institute of Technology, Integrated Energy Systems, Giefinggasse 4, 1210 Vienna, Austria)

  • Bernadette Fina

    (Energy Economics Group (EEG), Technische Universität Wien, Gusshausstraße 25-29, 1040 Vienna, Austria
    Center for Energy, AIT Austrian Institute of Technology, Integrated Energy Systems, Giefinggasse 4, 1210 Vienna, Austria)

  • Hans Auer

    (Energy Economics Group (EEG), Technische Universität Wien, Gusshausstraße 25-29, 1040 Vienna, Austria)

Abstract

To ensure broad application of renewable and energy-efficient energy systems in buildings and neighborhoods, profitable business models are vital. Energy supply contracting helps building residents to overcome the barrier of high upfront investment costs while additionally reducing risks related to energy-saving mechanisms. This study examines profitability for energy contractors in a variety of business cases that simultaneously ensure energy cost savings for the residents. A mixed-integer linear optimization model is developed for a neighborhood energy community, consisting of three buildings with diverse usages. In the process, the optimum capacities of building-attached and building-integrated photovoltaics, a heat pump and a gas-fired mini combined heat and power unit are determined to cover the energy community’s electricity and heat load. Results show that cross-domain contracting within energy communities is highly profitable for both, the contractor and the residents, while the extent depends on the accounting method, assumed interest rate and depreciation time. The additional application of energy-efficiency measures in/on the buildings, constituting a combination of energy supply and energy performance contracting, further increases profitability. The investigation of several sensitivities shows that high grid energy costs for electricity and gas enhance profitability of local energy technologies, leading to an increase in optimal technology capacities.

Suggested Citation

  • Carolin Monsberger & Bernadette Fina & Hans Auer, 2021. "Profitability of Energy Supply Contracting and Energy Sharing Concepts in a Neighborhood Energy Community: Business Cases for Austria," Energies, MDPI, vol. 14(4), pages 1-27, February.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:4:p:921-:d:496642
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/4/921/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/4/921/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Akter, M.N. & Mahmud, M.A. & Haque, M.E. & Oo, Amanullah M.T., 2020. "An optimal distributed energy management scheme for solving transactive energy sharing problems in residential microgrids," Applied Energy, Elsevier, vol. 270(C).
    2. Polzin, Friedemann & von Flotow, Paschen & Nolden, Colin, 2016. "What encourages local authorities to engage with energy performance contracting for retrofitting? Evidence from German municipalities," Energy Policy, Elsevier, vol. 94(C), pages 317-330.
    3. Kurt Kratena & Ina Meyer & Mark Sommer, 2014. "Alternative Szenarien zur Entwicklung des Energieverbrauchs in Österreich. Der Einfluss der CO2- und Energiepreise bis 2030," WIFO Monatsberichte (monthly reports), WIFO, vol. 87(6), pages 427-441, June.
    4. Zhou, Yuanrong & Evans, Meredydd & Yu, Sha & Sun, Xiaoliang & Wang, Juemin, 2020. "Linkages between policy and business innovation in the development of China's energy performance contracting market," Energy Policy, Elsevier, vol. 140(C).
    5. Klinke, Sandra, 2018. "The determinants for adoption of energy supply contracting: Empirical evidence from the Swiss market," Energy Policy, Elsevier, vol. 118(C), pages 221-231.
    6. Roberts, M.B. & Bruce, A. & MacGill, I., 2019. "Opportunities and barriers for photovoltaics on multi-unit residential buildings: Reviewing the Australian experience," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 95-110.
    7. Fina, Bernadette & Auer, Hans & Friedl, Werner, 2020. "Cost-optimal economic potential of shared rooftop PV in energy communities: Evidence from Austria," Renewable Energy, Elsevier, vol. 152(C), pages 217-228.
    8. Zhou, Yue & Wu, Jianzhong & Long, Chao, 2018. "Evaluation of peer-to-peer energy sharing mechanisms based on a multiagent simulation framework," Applied Energy, Elsevier, vol. 222(C), pages 993-1022.
    9. Zhang, Fang & Deng, Hao & Margolis, Robert & Su, Jun, 2015. "Analysis of distributed-generation photovoltaic deployment, installation time and cost, market barriers, and policies in China," Energy Policy, Elsevier, vol. 81(C), pages 43-55.
    10. Romero-Rubio, Carmen & de Andrés Díaz, José Ramón, 2015. "Sustainable energy communities: a study contrasting Spain and Germany," Energy Policy, Elsevier, vol. 85(C), pages 397-409.
    11. Karunathilake, Hirushie & Hewage, Kasun & Mérida, Walter & Sadiq, Rehan, 2019. "Renewable energy selection for net-zero energy communities: Life cycle based decision making under uncertainty," Renewable Energy, Elsevier, vol. 130(C), pages 558-573.
    12. Sorrell, Steve, 2007. "The economics of energy service contracts," Energy Policy, Elsevier, vol. 35(1), pages 507-521, January.
    13. Xu, Pengpeng & Chan, Edwin Hon-Wan & Qian, Queena Kun, 2011. "Success factors of energy performance contracting (EPC) for sustainable building energy efficiency retrofit (BEER) of hotel buildings in China," Energy Policy, Elsevier, vol. 39(11), pages 7389-7398.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Schipfer, F. & Mäki, E. & Schmieder, U. & Lange, N. & Schildhauer, T. & Hennig, C. & Thrän, D., 2022. "Status of and expectations for flexible bioenergy to support resource efficiency and to accelerate the energy transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    2. Marina Bertolini & Gregorio Morosinotto, 2023. "Business Models for Energy Community in the Aggregator Perspective: State of the Art and Research Gaps," Energies, MDPI, vol. 16(11), pages 1-26, June.
    3. Xiaoqing Huang & Xiaoyong Lu & Yuqi Sun & Jingui Yao & Wenxing Zhu, 2022. "A Comprehensive Performance Evaluation of Chinese Energy Supply Chain under “Double-Carbon” Goals Based on AHP and Three-Stage DEA," Sustainability, MDPI, vol. 14(16), pages 1-19, August.
    4. Gržanić, M. & Capuder, T. & Zhang, N. & Huang, W., 2022. "Prosumers as active market participants: A systematic review of evolution of opportunities, models and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    5. Meryem Hamidi & Abdelhadi Raihani & Omar Bouattane, 2023. "Sustainable Intelligent Energy Management System for Microgrid Using Multi-Agent Systems: A Case Study," Sustainability, MDPI, vol. 15(16), pages 1-19, August.
    6. Julia Morgan & Casey Canfield, 2021. "Comparing Behavioral Theories to Predict Consumer Interest to Participate in Energy Sharing," Sustainability, MDPI, vol. 13(14), pages 1-17, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gjorgievski, Vladimir Z. & Cundeva, Snezana & Georghiou, George E., 2021. "Social arrangements, technical designs and impacts of energy communities: A review," Renewable Energy, Elsevier, vol. 169(C), pages 1138-1156.
    2. Klinke, Sandra, 2018. "The determinants for adoption of energy supply contracting: Empirical evidence from the Swiss market," Energy Policy, Elsevier, vol. 118(C), pages 221-231.
    3. Fina, Bernadette & Roberts, Mike B. & Auer, Hans & Bruce, Anna & MacGill, Iain, 2021. "Exogenous influences on deployment and profitability of photovoltaics for self-consumption in multi-apartment buildings in Australia and Austria," Applied Energy, Elsevier, vol. 283(C).
    4. Simoiu, Mircea Stefan & Fagarasan, Ioana & Ploix, Stéphane & Calofir, Vasile, 2022. "Modeling the energy community members’ willingness to change their behaviour with multi-agent systems: A stochastic approach," Renewable Energy, Elsevier, vol. 194(C), pages 1233-1246.
    5. Bernadette Fina & Hans Auer, 2020. "Economic Viability of Renewable Energy Communities under the Framework of the Renewable Energy Directive Transposed to Austrian Law," Energies, MDPI, vol. 13(21), pages 1-31, November.
    6. Nolden, Colin & Sorrell, Steve & Polzin, Friedemann, 2016. "Catalysing the energy service market: The role of intermediaries," Energy Policy, Elsevier, vol. 98(C), pages 420-430.
    7. Deng, Qianli & Jiang, Xianglin & Cui, Qingbin & Zhang, Limao, 2015. "Strategic design of cost savings guarantee in energy performance contracting under uncertainty," Applied Energy, Elsevier, vol. 139(C), pages 68-80.
    8. Qin, Quande & Liang, Fuqi & Li, Li & Wei, Yi-Ming, 2017. "Selection of energy performance contracting business models: A behavioral decision-making approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 422-433.
    9. Li, Yan & Qiu, Yueming & Wang, Yi David, 2014. "Explaining the contract terms of energy performance contracting in China: The importance of effective financing," Energy Economics, Elsevier, vol. 45(C), pages 401-411.
    10. Roberts, Mike B. & Sharma, Arijit & MacGill, Iain, 2022. "Efficient, effective and fair allocation of costs and benefits in residential energy communities deploying shared photovoltaics," Applied Energy, Elsevier, vol. 305(C).
    11. Saveria Olga Murielle Boulanger & Martina Massari & Danila Longo & Beatrice Turillazzi & Carlo Alberto Nucci, 2021. "Designing Collaborative Energy Communities: A European Overview," Energies, MDPI, vol. 14(24), pages 1-17, December.
    12. Wenjie Zhang & Hongping Yuan, 2019. "A Bibliometric Analysis of Energy Performance Contracting Research from 2008 to 2018," Sustainability, MDPI, vol. 11(13), pages 1-23, June.
    13. Shang, Tiancheng & Liu, Peihong & Guo, Junxiong, 2020. "How to allocate energy-saving benefit for guaranteed savings EPC projects? A case of China," Energy, Elsevier, vol. 191(C).
    14. Zheng, Saina & Zhai, Haibo & Hsu, Shu-Chien & Armanios, Daniel Erian, 2024. "Uneven distribution in energy conservation services through performance contracts in China," Energy Policy, Elsevier, vol. 187(C).
    15. Hyein Yi & Sanghyo Lee & Jaejun Kim, 2017. "An ESCO Business Model Using CER for Buildings’ Energy Retrofit," Sustainability, MDPI, vol. 9(4), pages 1-21, April.
    16. Nolden, C. & Barnes, J. & Nicholls, J., 2020. "Community energy business model evolution: A review of solar photovoltaic developments in England," Renewable and Sustainable Energy Reviews, Elsevier, vol. 122(C).
    17. Wenjie Zhang & Yuqiang Zhao & Fengcheng Huang & Yongheng Zhong & Jianwei Zhou, 2021. "Forecasting the Energy and Economic Benefits of Photovoltaic Technology in China’s Rural Areas," Sustainability, MDPI, vol. 13(15), pages 1-22, July.
    18. Wenjie Zhang & Hongping Yuan, 2019. "Promoting Energy Performance Contracting for Achieving Urban Sustainability: What is the Research Trend?," Energies, MDPI, vol. 12(8), pages 1-18, April.
    19. Zhang, Mingshun & Wang, Mujie & Jin, Wei & Xia-Bauer, Chun, 2018. "Managing energy efficiency of buildings in China: A survey of energy performance contracting (EPC) in building sector," Energy Policy, Elsevier, vol. 114(C), pages 13-21.
    20. Martin Hammerschmid & Johannes Konrad & Andreas Werner & Tom Popov & Stefan Müller, 2022. "ENECO 2 Calc—A Modeling Tool for the Investigation of Energy Transition Paths toward Climate Neutrality within Municipalities," Energies, MDPI, vol. 15(19), pages 1-32, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:4:p:921-:d:496642. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.