IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i4p916-d496545.html
   My bibliography  Save this article

Hybrid-Excited PM Motor for Electric Vehicle

Author

Listed:
  • Luca Cinti

    (Department of Industrial Engineering, University of Padova, 35122 Padova, Italy)

  • Nicola Bianchi

    (Department of Industrial Engineering, University of Padova, 35122 Padova, Italy)

Abstract

This paper deals with the potentials of a Hybrid-Excitation Permanent-Magnet (HEPM) machine. The HEPM machine is characterized by a rotor including both permanent magnets (PMs) and excitation coils. The PMs produce a constant flux at the air gap of the machine, while an excitation current is supplied so as to regulate such a flux. A flux increase could be necessary during transient overload operations, while a flux decrease is useful during Flux-Weakening (FW) actions to operate at speeds higher than the nominal speed. Torque, power, efficiency, flux density and losses of an interior permanent magnet (IPM) motor and an HEPM motor are analyzed in detail. It is shown that this excitation winding produces a great advantage in terms of torque and power performance during the operations at speeds higher than the nominal speed. Despite the additional rotor losses, it is shown that there is a higher efficiency.

Suggested Citation

  • Luca Cinti & Nicola Bianchi, 2021. "Hybrid-Excited PM Motor for Electric Vehicle," Energies, MDPI, vol. 14(4), pages 1-12, February.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:4:p:916-:d:496545
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/4/916/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/4/916/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nicola Bianchi & Paolo Gherardo Carlet & Luca Cinti & Ludovico Ortombina, 2022. "A Review about Flux-Weakening Operating Limits and Control Techniques for Synchronous Motor Drives," Energies, MDPI, vol. 15(5), pages 1-18, March.
    2. Ryszard Palka & Kamil Cierzniewski & Marcin Wardach & Pawel Prajzendanc, 2023. "Research on Innovative Hybrid Excited Synchronous Machine," Energies, MDPI, vol. 16(18), pages 1-14, September.
    3. Peter Stumpf & Tamás Tóth-Katona, 2023. "Recent Achievements in the Control of Interior Permanent-Magnet Synchronous Machine Drives: A Comprehensive Overview of the State of the Art," Energies, MDPI, vol. 16(13), pages 1-46, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:4:p:916-:d:496545. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.