IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i4p876-d495448.html
   My bibliography  Save this article

Effect of the Inclusion of Photovoltaic Solar Panels in the Autonomy of UAV Time of Flight

Author

Listed:
  • Joana Engana Carmo

    (Department of Electrical and Computer Engineering, Instituto Superior Técnico, 1049-001 Lisbon, Portugal)

  • João Paulo Neto Torres

    (Department of Electrical and Computer Engineering, Instituto Superior Técnico, 1049-001 Lisbon, Portugal
    Instituto de Telecomunicações, 1049-001 Lisbon, Portugal
    Academia Militar, Av. Conde Castro Guimarães, 2720-113 Amadora, Portugal)

  • Gonçalo Cruz

    (Portuguese Air Force Research Center, 2715-311 Sintra, Portugal)

  • Ricardo A. Marques Lameirinhas

    (Department of Electrical and Computer Engineering, Instituto Superior Técnico, 1049-001 Lisbon, Portugal
    Instituto de Telecomunicações, 1049-001 Lisbon, Portugal)

Abstract

Photovoltaic technology and unmanned aerial vehicles are both alluring areas with a lot of potential to explore. Consequently, they have an ability to adapt and progress when faced with new challenges, hence their wide range of applications. An auspicious combination between the two is born from the Unmanned Aerial Vehicles’ (UAVs) inability to to overcome some of its problems, namely the autonomy one. This article springs from the need to vanquish the problem, finding a more permanent solution. Its aim consists in the installation of solar photovoltaic panels in the structure of a UAV, with the objective of studying being its influence on the vehicle’s time of flight. To accomplish this, a theoretical study will be made, encompassing all the potential variables together with its influence. In order to verify the credibility of these claims, a prototype, based on the original aerial vehicle structure form and material, is constructed, using a finite element tool. Later, the prototype is used to evaluate possible harsh circumambient air to structure interactions, modeled by the fluid motion describer Navier–Stokes equations. For a smooth approach involving lighter computational power, a RANS model is used to asses the equations. Based on its results the chosen solar technology credibility is evaluated. A simulation of solar cells will also be carried out, accepting as input previously studied parameters which will modify its performance. Bearing in mind the produced results, it is concluded that the solar panels can only significantly augment the time of flight in very specific conditions.

Suggested Citation

  • Joana Engana Carmo & João Paulo Neto Torres & Gonçalo Cruz & Ricardo A. Marques Lameirinhas, 2021. "Effect of the Inclusion of Photovoltaic Solar Panels in the Autonomy of UAV Time of Flight," Energies, MDPI, vol. 14(4), pages 1-19, February.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:4:p:876-:d:495448
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/4/876/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/4/876/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. João Paulo N. Torres & Carlos A. F. Fernandes & João Gomes & Bonfiglio Luc & Giovinazzo Carine & Olle Olsson & P. J. Costa Branco, 2018. "Effect of Reflector Geometry in the Annual Received Radiation of Low Concentration Photovoltaic Systems," Energies, MDPI, vol. 11(7), pages 1-15, July.
    2. Catarina Sofia Campos & João Paulo N. Torres & João F. P. Fernandes, 2019. "Effects of the Heat Transfer Fluid Selection on the Efficiency of a Hybrid Concentrated Photovoltaic and Thermal Collector," Energies, MDPI, vol. 12(9), pages 1-12, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. João Paulo N. Torres & Ana Sofia De Jesus & Ricardo A. Marques Lameirinhas, 2022. "How to Improve an Offshore Wind Station," Energies, MDPI, vol. 15(13), pages 1-20, July.
    2. Ricardo A. Marques Lameirinhas & João Paulo N. Torres & João P. de Melo Cunha, 2022. "A Photovoltaic Technology Review: History, Fundamentals and Applications," Energies, MDPI, vol. 15(5), pages 1-44, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ricardo A. Marques Lameirinhas & João Paulo N. Torres & João P. de Melo Cunha, 2022. "A Photovoltaic Technology Review: History, Fundamentals and Applications," Energies, MDPI, vol. 15(5), pages 1-44, March.
    2. Hossain, Farzad & Karim, Md. Rezwanul & Bhuiyan, Arafat A., 2022. "A review on recent advancements of the usage of nano fluid in hybrid photovoltaic/thermal (PV/T) solar systems," Renewable Energy, Elsevier, vol. 188(C), pages 114-131.
    3. Karolina Papis-Frączek & Krzysztof Sornek, 2022. "A Review on Heat Extraction Devices for CPVT Systems with Active Liquid Cooling," Energies, MDPI, vol. 15(17), pages 1-49, August.
    4. Catarina Sofia Campos & João Paulo N. Torres & João F. P. Fernandes, 2019. "Effects of the Heat Transfer Fluid Selection on the Efficiency of a Hybrid Concentrated Photovoltaic and Thermal Collector," Energies, MDPI, vol. 12(9), pages 1-12, May.
    5. David Leitão & João Paulo N. Torres & João F. P. Fernandes, 2020. "Spectral Irradiance Influence on Solar Cells Efficiency," Energies, MDPI, vol. 13(19), pages 1-18, September.
    6. Pouriya Nasseriyan & Hossein Afzali Gorouh & João Gomes & Diogo Cabral & Mazyar Salmanzadeh & Tiffany Lehmann & Abolfazl Hayati, 2020. "Numerical and Experimental Study of an Asymmetric CPC-PVT Solar Collector," Energies, MDPI, vol. 13(7), pages 1-21, April.
    7. Sadat, Seyyed Ali & Hoex, Bram & Pearce, Joshua M., 2022. "A Review of the Effects of Haze on Solar Photovoltaic Performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:4:p:876-:d:495448. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.