IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i4p803-d492557.html
   My bibliography  Save this article

The Development of the Temperature Disturbance Zone in the Surrounding of a Salt Cavern Caused by the Leaching Process for Safety Hydrogen Storage

Author

Listed:
  • Leszek Pająk

    (Department of Fossil Fuels, Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, al. Mickiewicza, 30-059 Kraków, Poland)

  • Leszek Lankof

    (Department of Renewable Energy and Environmental Research, Mineral and Energy Economy Research Institute of the Polish Academy, Wybickiego 7, 31-261 Krakow, Poland)

  • Barbara Tomaszewska

    (Department of Fossil Fuels, Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, al. Mickiewicza, 30-059 Kraków, Poland)

  • Paweł Wojnarowski

    (Department of Petroleum Engineering, Faculty of Drilling, Oil and Gas, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland)

  • Damian Janiga

    (Department of Petroleum Engineering, Faculty of Drilling, Oil and Gas, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland)

Abstract

This article presents an estimation of the temperature decrease in the vicinity of a salt cavern due to its leaching. The one-dimensional radially symmetry models of a salt cavern were considered and described. The initial temperature of rock salt massif was assumed as 50 ∘ C and temperature of leaching water varied seasonally from 6 ∘ C to 20 ∘ C. A significant influence of the season of the leaching process, beginning on the final temperature distribution was found. The model takes into account: convection coefficient changes depending on temperature of brine and rock formation and heat effects caused by salt dissolution. Numerical results are compared with measurements data on the field of cavern volume increasing with time as the function of flow of leaching water and its temperature. The accuracy of the cavern volume increasing versus time was assumed as good—both quantitative and qualitative.

Suggested Citation

  • Leszek Pająk & Leszek Lankof & Barbara Tomaszewska & Paweł Wojnarowski & Damian Janiga, 2021. "The Development of the Temperature Disturbance Zone in the Surrounding of a Salt Cavern Caused by the Leaching Process for Safety Hydrogen Storage," Energies, MDPI, vol. 14(4), pages 1-14, February.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:4:p:803-:d:492557
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/4/803/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/4/803/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liu, Wei & Zhang, Zhixin & Chen, Jie & Jiang, Deyi & Wu, Fei & Fan, Jinyang & Li, Yinping, 2020. "Feasibility evaluation of large-scale underground hydrogen storage in bedded salt rocks of China: A case study in Jiangsu province," Energy, Elsevier, vol. 198(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lankof, Leszek & Urbańczyk, Kazimierz & Tarkowski, Radosław, 2022. "Assessment of the potential for underground hydrogen storage in salt domes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    2. Jahanbakhsh, Amir & Louis Potapov-Crighton, Alexander & Mosallanezhad, Abdolali & Tohidi Kaloorazi, Nina & Maroto-Valer, M. Mercedes, 2024. "Underground hydrogen storage: A UK perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bohang Liu & Lei Wang & Yintong Guo & Jing Li & Hanzhi Yang, 2022. "Experimental Investigation on the Evolution of Tensile Mechanical Behavior of Cement Stone Considering the Variation of Burial Depth," Energies, MDPI, vol. 15(19), pages 1-16, October.
    2. Shaojie Song & Haiyang Lin & Peter Sherman & Xi Yang & Chris P. Nielsen & Xinyu Chen & Michael B. McElroy, 2021. "Production of hydrogen from offshore wind in China and cost-competitive supply to Japan," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    3. Lei Wang & Bohang Liu & Hanzhi Yang & Yintong Guo & Jing Li & Hejuan Liu, 2022. "Experimental Study on the Compressive and Shear Mechanical Properties of Cement–Formation Interface Considering Surface Roughness and Drilling Mud Contamination," Energies, MDPI, vol. 15(17), pages 1-17, September.
    4. Wang, Junbao & Wang, Xiaopeng & Zhang, Qiang & Song, Zhanping & Zhang, Yuwei, 2021. "Dynamic prediction model for surface settlement of horizontal salt rock energy storage," Energy, Elsevier, vol. 235(C).
    5. Xie, Dongzhou & Wang, Tongtao & Li, Long & Guo, Kai & Ben, Jianhua & Wang, Duocai & Chai, Guoxing, 2023. "Modeling debrining of an energy storage salt cavern considering the effects of temperature," Energy, Elsevier, vol. 282(C).
    6. Bai, Weizheng & Shi, Xilin & Yang, Chunhe & Zhu, Shijie & Wei, Xinxing & Li, Yinping & Liu, Xin, 2024. "Assessment of the potential of salt mines for renewable energy peaking in China," Energy, Elsevier, vol. 300(C).
    7. Usman, Muhammad R., 2022. "Hydrogen storage methods: Review and current status," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    8. Li, Peng & Li, Yinping & Shi, Xilin & Zhao, Kai & Liu, Xin & Ma, Hongling & Yang, Chunhe, 2021. "Prediction method for calculating the porosity of insoluble sediments for salt cavern gas storage applications," Energy, Elsevier, vol. 221(C).
    9. Zhang, Xiong & Liu, Wei & Jiang, Deyi & Qiao, Weibiao & Liu, Enbin & Zhang, Nan & Fan, Jinyang, 2021. "Investigation on the influences of interlayer contents on stability and usability of energy storage caverns in bedded rock salt," Energy, Elsevier, vol. 231(C).
    10. Li, Jinlong & Shi, Xilin & Zhang, Shuai, 2020. "Construction modeling and parameter optimization of multi-step horizontal energy storage salt caverns," Energy, Elsevier, vol. 203(C).
    11. Wu, Yunna & Liu, Fangtong & Wu, Junhao & He, Jiaming & Xu, Minjia & Zhou, Jianli, 2022. "Barrier identification and analysis framework to the development of offshore wind-to-hydrogen projects," Energy, Elsevier, vol. 239(PB).
    12. Du, Zhengyang & Dai, Zhenxue & Yang, Zhijie & Zhan, Chuanjun & Chen, Wei & Cao, Mingxu & Thanh, Hung Vo & Soltanian, Mohamad Reza, 2024. "Exploring hydrogen geologic storage in China for future energy: Opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 196(C).
    13. Meng Gao & Chenji Wei & Xiangguo Zhao & Ruijie Huang & Jian Yang & Baozhu Li, 2022. "Production Forecasting Based on Attribute-Augmented Spatiotemporal Graph Convolutional Network for a Typical Carbonate Reservoir in the Middle East," Energies, MDPI, vol. 16(1), pages 1-21, December.
    14. Chen, Wei & Liu, Jie & Peng, Wenqing & Zhao, Yanlin & Luo, Shilin & Wan, Wen & Wu, Qiuhong & Wang, Yuanzeng & Li, Shengnan & Tang, Xiaoyu & Zeng, Xiantao & Wu, Xiaofan & Zhou, Yu & Xie, Senlin, 2023. "Aging deterioration of mechanical properties on coal-rock combinations considering hydro-chemical corrosion," Energy, Elsevier, vol. 282(C).
    15. Wang, Yihan & Yang, Wei & Yang, Wenming & Luo, Liming & lyu, Jieyao, 2024. "Effect of AES anionic surfactant on the microstructure and wettability of coal," Energy, Elsevier, vol. 289(C).
    16. Jingcui Li & Jifang Wan & Hangming Liu & Maria Jose Jurado & Yuxian He & Guangjie Yuan & Yan Xia, 2022. "Stability Analysis of a Typical Salt Cavern Gas Storage in the Jintan Area of China," Energies, MDPI, vol. 15(11), pages 1-15, June.
    17. Aleksandra Małachowska & Natalia Łukasik & Joanna Mioduska & Jacek Gębicki, 2022. "Hydrogen Storage in Geological Formations—The Potential of Salt Caverns," Energies, MDPI, vol. 15(14), pages 1-19, July.
    18. Huiyong Song & Song Zhu & Jinlong Li & Zhuoteng Wang & Qingdong Li & Zexu Ning, 2023. "Design Criteria for the Construction of Energy Storage Salt Cavern Considering Economic Benefits and Resource Utilization," Sustainability, MDPI, vol. 15(8), pages 1-16, April.
    19. Guosheng Ding & Hejuan Liu & Debin Xia & Duocai Wang & Famu Huang & Haitao Guo & Lihuan Xie & Yintong Guo & Mingyang Wu & Haijun Mao, 2023. "Experimental Study of the Shear Characteristics of Fault Filled with Different Types of Gouge in Underground Gas Storage," Energies, MDPI, vol. 16(7), pages 1-16, March.
    20. Xie, Lingzhi & Yuan, Ziran & He, Bo & Wang, Runxi, 2024. "Experimental and molecular dynamics studies on the multiscale permeability properties of various gases in salt rock," Energy, Elsevier, vol. 290(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:4:p:803-:d:492557. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.