IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i3p681-d488985.html
   My bibliography  Save this article

Humidity Distribution in High-Occupancy Indoor Micro-Climates

Author

Listed:
  • Matthew Bonello

    (Department of Environmental Design, Faculty for the Built Environment, University of Malta, 2080 Msida, Malta
    These authors contributed equally to this work.)

  • Daniel Micallef

    (Department of Environmental Design, Faculty for the Built Environment, University of Malta, 2080 Msida, Malta
    These authors contributed equally to this work.)

  • Simon Paul Borg

    (Department of Environmental Design, Faculty for the Built Environment, University of Malta, 2080 Msida, Malta
    These authors contributed equally to this work.)

Abstract

The general consensus among academics is that the spatio-temporal humidity distribution is more or less uniform in an indoor space. This has, for the large part, not yet been proven by an academic study; subsequently, this paper aims to demonstrate that this is not always true. The paper makes use of a validated transient CFD model, which uses the Low Reynolds Number k- ϵ turbulence model. The model simulates people in a room at a constant skin temperature and emitting a constant source of humidity using source terms in the species equation. The model is eventually used to predict the implications of having a high source of humidity, in the form of occupancy, on the micro-climate’s spatio-temporal humidity distribution. The results for the high-occupancy case show that different locations experience various amounts of humid air, with a 31% difference between the lowest and highest locations. The amount of water vapor in each person’s proximity is deemed to be highly dependent on the flow of the inlet jet, with the people farthest from the jet having an overall less mass of water vapor in their proximity over the two-hour experimental period. This paper has concluded that there are, in fact, cases where the humidity non-uniformity inside an interior environment becomes substantial in situations of high occupancy. The results of this paper may be useful to improve the design of HVAC systems.

Suggested Citation

  • Matthew Bonello & Daniel Micallef & Simon Paul Borg, 2021. "Humidity Distribution in High-Occupancy Indoor Micro-Climates," Energies, MDPI, vol. 14(3), pages 1-16, January.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:3:p:681-:d:488985
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/3/681/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/3/681/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Butera, Federico M., 1998. "Chapter 3--Principles of thermal comfort," Renewable and Sustainable Energy Reviews, Elsevier, vol. 2(1-2), pages 39-66, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Enescu, Diana, 2017. "A review of thermal comfort models and indicators for indoor environments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1353-1379.
    2. Khodakarami, Jamal & Nasrollahi, Nazanin, 2012. "Thermal comfort in hospitals – A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4071-4077.
    3. Duan, Mengfan & Sun, Hongli & Wu, Shuangdui & Wu, Yifan & Lin, Borong, 2023. "A simplified model for the evaluation and comparison of the dynamic performance of different heating terminal types," Energy, Elsevier, vol. 263(PD).
    4. Nematchoua, Modeste Kameni & Tchinda, René & Ricciardi, Paola & Djongyang, Noël, 2014. "A field study on thermal comfort in naturally-ventilated buildings located in the equatorial climatic region of Cameroon," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 381-393.
    5. Overen Ochuko Kelvin & Meyer Leroy Edson & Makaka Golden, 2017. "Thermal, Economic and Environmental Analysis of a Low-Cost House in Alice, South Africa," Sustainability, MDPI, vol. 9(3), pages 1-20, March.
    6. Yuang Guo & Dewancker Bart, 2020. "Optimization of Design Parameters for Office Buildings with Climatic Adaptability Based on Energy Demand and Thermal Comfort," Sustainability, MDPI, vol. 12(9), pages 1-23, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:3:p:681-:d:488985. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.