IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i24p8220-d696816.html
   My bibliography  Save this article

CO 2 Liquefaction Close to the Triple Point Pressure

Author

Listed:
  • Stian Trædal

    (SINTEF Energy Research, 7034 Trondheim, Norway)

  • Jacob Hans Georg Stang

    (SINTEF Energy Research, 7034 Trondheim, Norway)

  • Ingrid Snustad

    (SINTEF Energy Research, 7034 Trondheim, Norway)

  • Martin Viktor Johansson

    (SINTEF Energy Research, 7034 Trondheim, Norway)

  • David Berstad

    (SINTEF Energy Research, 7034 Trondheim, Norway)

Abstract

For vessel-based transport of liquid CO 2 in carbon capture and storage chains, transport at 8 bar(a) enable significant cost reductions compared to transport at higher pressures for most transport distances and volumes. Transport at even lower pressures could further reduce the costs. There are, however, concerns related to dry ice formation and potential clogging in parts of the chain that could lead to operational issues when operating close to the triple point pressure of CO 2 . In this paper, results from an experimental campaign to de-risk and gain operational experience from the low-pressure CO 2 liquefaction process are described. Six experiments using pure CO 2 or CO 2 /N 2 mixtures are presented. In four of the experiments, the liquid product pressure was continuously lowered until dry ice was detected and eventually clogged the system. In the final two experiments, the liquefaction process was run in steady-state at low liquefaction pressures for five hours to ensure that there is no undetected dry ice in the process that could lead to accumulation and operational issues over time. These experiments demonstrate that pure CO 2 can be safely liquefied at 5.8 bar(a) and a CO 2 /N 2 mixture can be liquefied at 6.5 bar(a) without issues related to dry ice formation.

Suggested Citation

  • Stian Trædal & Jacob Hans Georg Stang & Ingrid Snustad & Martin Viktor Johansson & David Berstad, 2021. "CO 2 Liquefaction Close to the Triple Point Pressure," Energies, MDPI, vol. 14(24), pages 1-15, December.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:24:p:8220-:d:696816
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/24/8220/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/24/8220/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Simon Roussanaly & Han Deng & Geir Skaugen & Truls Gundersen, 2021. "At what Pressure Shall CO 2 Be Transported by Ship? An in-Depth Cost Comparison of 7 and 15 Barg Shipping," Energies, MDPI, vol. 14(18), pages 1-27, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Choe, Changgwon & Haider, Junaid & Lim, Hankwon, 2023. "Carbon capture and liquefaction from methane steam reforming unit: 4E’s analysis (Energy, Exergy, Economic, and Environmental)," Applied Energy, Elsevier, vol. 332(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wentao Gong & Eryk Remiezowicz & Philip Loldrup Fosbøl & Nicolas von Solms, 2022. "Design and Analysis of Novel CO 2 Conditioning Process in Ship-Based CCS," Energies, MDPI, vol. 15(16), pages 1-18, August.
    2. Golrokh Sani, Ahmad & Najafi, Hamidreza & Azimi, Seyedeh Shakiba, 2022. "Dynamic thermal modeling of the refrigerated liquified CO2 tanker in carbon capture, utilization, and storage chain: A truck transport case study," Applied Energy, Elsevier, vol. 326(C).
    3. Enbin Liu & Xudong Lu & Daocheng Wang, 2023. "A Systematic Review of Carbon Capture, Utilization and Storage: Status, Progress and Challenges," Energies, MDPI, vol. 16(6), pages 1-48, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:24:p:8220-:d:696816. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.