IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i24p8219-d696905.html
   My bibliography  Save this article

Reconfigurable Intelligent Surfaces for 5G and beyond Wireless Communications: A Comprehensive Survey

Author

Listed:
  • Teena Sharma

    (Departement des Sciences Appliquées, Université du Québec à Chicoutimi, Chicoutimi, QC G7H 2B1, Canada)

  • Abdellah Chehri

    (Departement des Sciences Appliquées, Université du Québec à Chicoutimi, Chicoutimi, QC G7H 2B1, Canada)

  • Paul Fortier

    (Department of Electrical and Computer Engineering, Laval University, Québec, QC G1V 0A6, Canada)

Abstract

With possible new use cases and demanding requirements of future 5th generation (5G) and beyond cellular networks, the future of mobile communications sounds promising. However, the propagation medium has been considered a randomly acting agent between the transmitter and the receiver. With the advent of the digital age of wireless communications, the received signal quality is degrading due to the uncontrollable interactions of the transmitted radio waves with the surrounding artifacts. This paper presents a comprehensive literature review on reconfigurable intelligent surfaces (RISs) and assisted application areas. With the RIS, the network operators can control radio waves’ scattering, reflection, and refraction characteristics by resolving the harmful properties of environmental wireless propagation. Further, the RIS can effectively control the wavefront, such as amplitude, phase, frequency, and even polarization, without requiring complex encoding, decoding, or radio wave processing techniques. Motivated by technological advances, the metasurfaces, reflectarrays, phase shift, and liquid crystals are potential candidates for implementing RIS. Thus, they can be considered the front runner for realizing the 5G and beyond network. Furthermore, the current research activities in the evolving field of wireless networks operated by RIS are reviewed and discussed thoroughly. Finally, to fully explore the potential of RISs in wireless networks, the fundamental research issues to be addressed have been discussed.

Suggested Citation

  • Teena Sharma & Abdellah Chehri & Paul Fortier, 2021. "Reconfigurable Intelligent Surfaces for 5G and beyond Wireless Communications: A Comprehensive Survey," Energies, MDPI, vol. 14(24), pages 1-28, December.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:24:p:8219-:d:696905
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/24/8219/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/24/8219/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ghassan Alnwaimi & Hatem Boujemaa, 2021. "Hybrid RF/FSO communications through Reconfigurable Intelligent Surfaces in the presence of pointing errors," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 78(2), pages 155-162, October.
    2. Lei Zhang & Xiao Qing Chen & Shuo Liu & Qian Zhang & Jie Zhao & Jun Yan Dai & Guo Dong Bai & Xiang Wan & Qiang Cheng & Giuseppe Castaldi & Vincenzo Galdi & Tie Jun Cui, 2018. "Space-time-coding digital metasurfaces," Nature Communications, Nature, vol. 9(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Joseph Isabona & Agbotiname Lucky Imoize & Stephen Ojo & Dinh-Thuan Do & Cheng-Chi Lee, 2023. "Machine Learning-Based GPR with LBFGS Kernel Parameters Selection for Optimal Throughput Mining in 5G Wireless Networks," Sustainability, MDPI, vol. 15(2), pages 1-22, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hiroki Takeshita & Ashif Aminulloh Fathnan & Daisuke Nita & Atsuko Nagata & Shinya Sugiura & Hiroki Wakatsuchi, 2024. "Frequency-hopping wave engineering with metasurfaces," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Wenzhi Li & Qiyue Yu & Jing Hui Qiu & Jiaran Qi, 2024. "Intelligent wireless power transfer via a 2-bit compact reconfigurable transmissive-metasurface-based router," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Geng-Bo Wu & Jun Yan Dai & Kam Man Shum & Ka Fai Chan & Qiang Cheng & Tie Jun Cui & Chi Hou Chan, 2023. "A universal metasurface antenna to manipulate all fundamental characteristics of electromagnetic waves," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    4. Jérôme Sol & David R. Smith & Philipp Hougne, 2022. "Meta-programmable analog differentiator," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Jing Cheng Liang & Lei Zhang & Zhangjie Luo & Rui Zhe Jiang & Zhang Wen Cheng & Si Ran Wang & Meng Ke Sun & Shi Jin & Qiang Cheng & Tie Jun Cui, 2024. "A filtering reconfigurable intelligent surface for interference-free wireless communications," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    6. Emanuele Galiffi & Paloma A. Huidobro & J. B. Pendry, 2022. "An Archimedes' screw for light," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    7. Siyu Duan & Xin Su & Hongsong Qiu & Yushun Jiang & Jingbo Wu & Kebin Fan & Caihong Zhang & Xiaoqing Jia & Guanghao Zhu & Lin Kang & Xinglong Wu & Huabing Wang & Keyu Xia & Biaobing Jin & Jian Chen & P, 2024. "Linear and phase controllable terahertz frequency conversion via ultrafast breaking the bond of a meta-molecule," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    8. Si Ran Wang & Jun Yan Dai & Qun Yan Zhou & Jun Chen Ke & Qiang Cheng & Tie Jun Cui, 2023. "Manipulations of multi-frequency waves and signals via multi-partition asynchronous space-time-coding digital metasurface," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    9. Geng-Bo Wu & Jun Yan Dai & Kam Man Shum & Ka Fai Chan & Qiang Cheng & Tie Jun Cui & Chi Hou Chan, 2024. "A synthetic moving-envelope metasurface antenna for independent control of arbitrary harmonic orders," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    10. Xin Wang & Jia Qi Han & Guan Xuan Li & De Xiao Xia & Ming Yang Chang & Xiang Jin Ma & Hao Xue & Peng Xu & Rui Jie Li & Kun Yi Zhang & Hai Xia Liu & Long Li & Tie Jun Cui, 2023. "High-performance cost efficient simultaneous wireless information and power transfers deploying jointly modulated amplifying programmable metasurface," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:24:p:8219-:d:696905. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.