IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i23p7977-d690837.html
   My bibliography  Save this article

Xerogel-like Materials from Sustainable Sources: Properties and Electrochemical Performances

Author

Listed:
  • Gisele Amaral-Labat

    (Instituto Nacional de Pesquisas Espaciais, Av. dos Astronautas, 1758, Jardim da Granja, São José dos Campos 12227-010, SP, Brazil)

  • Manuella Gobbo C. Munhoz

    (Departamento de Engenharia Metalúrgica e de Materiais (PMT), Universidade de São Paulo (USP), Avenida Mello Moraes, 2463, Cidade Universitária, São Paulo 05508-030, SP, Brazil)

  • Beatriz Carvalho da Silva Fonseca

    (Instituto Nacional de Pesquisas Espaciais, Av. dos Astronautas, 1758, Jardim da Granja, São José dos Campos 12227-010, SP, Brazil)

  • Alan Fernando Ney Boss

    (Departamento de Engenharia Metalúrgica e de Materiais (PMT), Universidade de São Paulo (USP), Avenida Mello Moraes, 2463, Cidade Universitária, São Paulo 05508-030, SP, Brazil)

  • Patricia de Almeida-Mattos

    (Departamento de Engenharia Metalúrgica e de Materiais (PMT), Universidade de São Paulo (USP), Avenida Mello Moraes, 2463, Cidade Universitária, São Paulo 05508-030, SP, Brazil)

  • Flavia Lega Braghiroli

    (Centre Technologique des Résidus Industriels, Cégep de l’Abitibi-Témiscamingue, 425 Boul. du Collège, Rouyn-Noranda, QC J9X 5E5, Canada)

  • Hassine Bouafif

    (Centre Technologique des Résidus Industriels, Cégep de l’Abitibi-Témiscamingue, 425 Boul. du Collège, Rouyn-Noranda, QC J9X 5E5, Canada)

  • Ahmed Koubaa

    (Institut de recherche sur les forêts, Université du Québec en Abitibi-Témiscamingue, 445 Boul. University, Rouyn-Noranda, QC J9X 5E4, Canada)

  • Guilherme F. B. Lenz e Silva

    (Departamento de Engenharia Metalúrgica e de Materiais (PMT), Universidade de São Paulo (USP), Avenida Mello Moraes, 2463, Cidade Universitária, São Paulo 05508-030, SP, Brazil)

  • Maurício Ribeiro Baldan

    (Instituto Nacional de Pesquisas Espaciais, Av. dos Astronautas, 1758, Jardim da Granja, São José dos Campos 12227-010, SP, Brazil)

Abstract

Energy storage is currently one of the most significant technological challenges globally, and supercapacitor is a prominent candidate over batteries due to its ability for fast charging and long lifetime. Supercapacitors typically use porous carbon as electrodes, because of both the high conductivity and surface area of the material. However, the state-of-the-art porous carbon described in the literature uses toxic chemicals and complex procedures that enhance costs and pollute the environment. Thus, a more sustainable procedure to produce porous carbon is highly desirable. In this context, xerogel-like carbons were prepared by a new, cheap, simple route to polymerization reactions of tannin-formaldehyde in a bio-oil by-product. Using bio-oil in its natural pH allowed a cost reduction and avoided using new reactants to change the reactional medium. Textural properties and electrochemical performances were improved by fast activating the material per 20 min. The non-activated carbon xerogel presented a capacitance of 92 F/g, while the activated one had 132 F/g, given that 77% of the components used are eco-friendly. These results demonstrate that renewable materials may find applications as carbon electrodes for supercapacitors. Overhauling the synthesis route with a different pH or replacing formaldehyde may enhance performance or provide a 100% sustainable carbon electrode.

Suggested Citation

  • Gisele Amaral-Labat & Manuella Gobbo C. Munhoz & Beatriz Carvalho da Silva Fonseca & Alan Fernando Ney Boss & Patricia de Almeida-Mattos & Flavia Lega Braghiroli & Hassine Bouafif & Ahmed Koubaa & Gui, 2021. "Xerogel-like Materials from Sustainable Sources: Properties and Electrochemical Performances," Energies, MDPI, vol. 14(23), pages 1-14, November.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:23:p:7977-:d:690837
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/23/7977/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/23/7977/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hall, Peter J. & Bain, Euan J., 2008. "Energy-storage technologies and electricity generation," Energy Policy, Elsevier, vol. 36(12), pages 4352-4355, December.
    2. Xiu, Shuangning & Shahbazi, Abolghasem, 2012. "Bio-oil production and upgrading research: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4406-4414.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zaib Un Nisa & Lee Kean Chuan & Beh Hoe Guan & Faiz Ahmad & Saba Ayub, 2023. "A Comparative Study on the Crystalline and Surface Properties of Carbonized Mesoporous Coconut Shell Chars," Sustainability, MDPI, vol. 15(8), pages 1-15, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aboagye, D. & Banadda, N. & Kiggundu, N. & Kabenge, I., 2017. "Assessment of orange peel waste availability in ghana and potential bio-oil yield using fast pyrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 814-821.
    2. Primaz, Carmem T. & Ribes-Greus, Amparo & Jacques, Rosângela A., 2021. "Valorization of cotton residues for production of bio-oil and engineered biochar," Energy, Elsevier, vol. 235(C).
    3. Wade, N.S. & Taylor, P.C. & Lang, P.D. & Jones, P.R., 2010. "Evaluating the benefits of an electrical energy storage system in a future smart grid," Energy Policy, Elsevier, vol. 38(11), pages 7180-7188, November.
    4. Díaz-González, Francisco & Sumper, Andreas & Gomis-Bellmunt, Oriol & Villafáfila-Robles, Roberto, 2012. "A review of energy storage technologies for wind power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2154-2171.
    5. Rabiee, Abdorreza & Khorramdel, Hossein & Aghaei, Jamshid, 2013. "A review of energy storage systems in microgrids with wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 316-326.
    6. Hu, Hangli & Luo, Yanru & Zou, Jianfeng & Zhang, Shukai & Yellezuome, Dominic & Rahman, Md Maksudur & Li, Yingkai & Li, Chong & Cai, Junmeng, 2022. "Exploring aging kinetic mechanisms of bio-oil from biomass pyrolysis based on change in carbonyl content," Renewable Energy, Elsevier, vol. 199(C), pages 782-790.
    7. Magdeldin, Mohamed & Kohl, Thomas & Järvinen, Mika, 2017. "Techno-economic assessment of the by-products contribution from non-catalytic hydrothermal liquefaction of lignocellulose residues," Energy, Elsevier, vol. 137(C), pages 679-695.
    8. Zamora, Ramon & Srivastava, Anurag K., 2010. "Controls for microgrids with storage: Review, challenges, and research needs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 2009-2018, September.
    9. Shahriyar Nasirov & Carlos Silva & Claudio A. Agostini, 2015. "Investors’ Perspectives on Barriers to the Deployment of Renewable Energy Sources in Chile," Energies, MDPI, vol. 8(5), pages 1-21, April.
    10. Esteban, Miguel & Portugal-Pereira, Joana, 2014. "Post-disaster resilience of a 100% renewable energy system in Japan," Energy, Elsevier, vol. 68(C), pages 756-764.
    11. Yan, Kai & Wu, Guosheng & Lafleur, Todd & Jarvis, Cody, 2014. "Production, properties and catalytic hydrogenation of furfural to fuel additives and value-added chemicals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 663-676.
    12. Esteban, Miguel & Zhang, Qi & Utama, Agya & Tezuka, Tetsuo & Ishihara, Keiichi N., 2010. "Methodology to estimate the output of a dual solar-wind renewable energy system in Japan," Energy Policy, Elsevier, vol. 38(12), pages 7793-7802, December.
    13. Suopajärvi, Hannu & Pongrácz, Eva & Fabritius, Timo, 2013. "The potential of using biomass-based reducing agents in the blast furnace: A review of thermochemical conversion technologies and assessments related to sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 511-528.
    14. Andrew N. Amenaghawon & Chinedu L. Anyalewechi & Charity O. Okieimen & Heri Septya Kusuma, 2021. "Biomass pyrolysis technologies for value-added products: a state-of-the-art review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(10), pages 14324-14378, October.
    15. Yang, Zixu & Kumar, Ajay & Huhnke, Raymond L., 2015. "Review of recent developments to improve storage and transportation stability of bio-oil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 859-870.
    16. Yongyou Nie & Yuhan Wang & Lu Li & Haolan Liao, 2023. "Literature Review on Power Battery Echelon Reuse and Recycling from a Circular Economy Perspective," IJERPH, MDPI, vol. 20(5), pages 1-28, February.
    17. Taghipour, Alireza & Ramirez, Jerome A. & Brown, Richard J. & Rainey, Thomas J., 2019. "A review of fractional distillation to improve hydrothermal liquefaction biocrude characteristics; future outlook and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    18. Gallo, A.B. & Simões-Moreira, J.R. & Costa, H.K.M. & Santos, M.M. & Moutinho dos Santos, E., 2016. "Energy storage in the energy transition context: A technology review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 800-822.
    19. Parra, David & Patel, Martin K., 2016. "Effect of tariffs on the performance and economic benefits of PV-coupled battery systems," Applied Energy, Elsevier, vol. 164(C), pages 175-187.
    20. Zhou, Zhibin & Benbouzid, Mohamed & Frédéric Charpentier, Jean & Scuiller, Franck & Tang, Tianhao, 2013. "A review of energy storage technologies for marine current energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 390-400.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:23:p:7977-:d:690837. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.