IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i23p7972-d690694.html
   My bibliography  Save this article

An Analysis of a Laminar-Turbulent Transition and Thermal Plumes Behavior in a Paramagnetic Fluid Subjected to an External Magnetic Field

Author

Listed:
  • Anna Kraszewska

    (Department of Fundamental Research in Energy Engineering, AGH University of Science and Technology, 30 Mickiewicza Av., 30-059 Krakow, Poland)

  • Janusz Donizak

    (Department of Fundamental Research in Energy Engineering, AGH University of Science and Technology, 30 Mickiewicza Av., 30-059 Krakow, Poland)

Abstract

Transition to turbulence and changes in the fluid flow structure are subjects of continuous analysis and research, especially for unique fields of research such as the thermo-magnetic convection of weakly magnetic fluids. Therefore, an experimental and numerical research of the influence of an external magnetic field on a natural convection’s fluid flow was conducted in the presented research. The experimental part was performed for an enclosure with a 0.5 aspect ratio, which was filled with a paramagnetic fluid and placed in a superconducting magnet in a position granting the enhancement of the flow. The process was recorded as temperature signals from the thermocouples placed in the analyzed fluid. The numerical research enabled an investigation based not only on temperature, but velocities as well. Experimental and numerical data were analyzed with the application of extended fast Fourier transform and wavelet analysis. The obtained results allowed the determination of changes in the nature of the flow and visualization of the influence of an imposed strong magnetic field on a magnetic fluid. It is proved that an applied magnetic field actuates the flow in Rayleigh-Benard convection and causes the change from laminar to turbulent flow for fairly low magnetic field inductions (2T and 3T for ΔT = 5 and 11 °C respectively). Fast Fourier transform allowed the definition of characteristic frequencies for oscillatory states in the flow, as well as an observation that the high values of magnetic field elongate the inertial range of the flow on the power spectrum density. Temperature maps obtained during numerical simulations granted visualizations of thermal plume formation and behavior with increasing magnetic field.

Suggested Citation

  • Anna Kraszewska & Janusz Donizak, 2021. "An Analysis of a Laminar-Turbulent Transition and Thermal Plumes Behavior in a Paramagnetic Fluid Subjected to an External Magnetic Field," Energies, MDPI, vol. 14(23), pages 1-23, November.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:23:p:7972-:d:690694
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/23/7972/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/23/7972/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hamed Bagheri & Mohammadali Behrang & Ehsanolah Assareh & Mohsen Izadi & Mikhail A. Sheremet, 2019. "Free Convection of Hybrid Nanofluids in a C-Shaped Chamber under Variable Heat Flux and Magnetic Field: Simulation, Sensitivity Analysis, and Artificial Neural Networks," Energies, MDPI, vol. 12(14), pages 1-17, July.
    2. Siti Nur Alwani Salleh & Norfifah Bachok & Norihan Md Arifin & Fadzilah Md Ali & Ioan Pop, 2018. "Magnetohydrodynamics Flow Past a Moving Vertical Thin Needle in a Nanofluid with Stability Analysis," Energies, MDPI, vol. 11(12), pages 1-15, November.
    3. Tagawa, T., 2006. "Numerical simulation of two-phase flows in the presence of a magnetic field," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 72(2), pages 212-219.
    4. C. S. Huang & Chia-Wang Yu & R. H. Chen & Chun-Ta Tzeng & Chi-Ming Lai, 2019. "Experimental Observation of Natural Convection Heat Transfer Performance of a Rectangular Thermosyphon," Energies, MDPI, vol. 12(9), pages 1-12, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Iskandar Waini & Anuar Ishak & Ioan Pop, 2020. "Hybrid Nanofluid Flow Past a Permeable Moving Thin Needle," Mathematics, MDPI, vol. 8(4), pages 1-18, April.
    2. Der-Fa Chen & Yi-Cheng Shih & Shih-Cheng Li & Chin-Tung Chen & Jung-Chu Ting, 2020. "Permanent-Magnet SLM Drive System Using AMRRSPNNB Control System with DGWO," Energies, MDPI, vol. 13(11), pages 1-25, June.
    3. Jorge de Brito & M. Glória Gomes, 2020. "Special Issue “Building Thermal Envelope”," Energies, MDPI, vol. 13(5), pages 1-5, February.
    4. A. J. Chamkha & A. M. Rashad & E. R. EL-Zahar & Hamed A. EL-Mky, 2019. "Analytical and Numerical Investigation of Fe 3 O 4 –Water Nanofluid Flow over a Moveable Plane in a Parallel Stream with High Suction," Energies, MDPI, vol. 12(1), pages 1-18, January.
    5. Chia-Wang Yu & C. S. Huang & C. T. Tzeng & Chi-Ming Lai, 2019. "Effects of the Aspect Ratio of a Rectangular Thermosyphon on Its Thermal Performance," Energies, MDPI, vol. 12(20), pages 1-11, October.
    6. Song, Ying-Qing & Hamid, Aamir & Khan, M. Ijaz & Gowda, R.J. Punith & Kumar, R. Naveen & Prasannakumara, B.C. & Khan, Sami Ullah & Khan, M. Imran & Malik, M.Y., 2021. "Solar energy aspects of gyrotactic mixed bioconvection flow of nanofluid past a vertical thin moving needle influenced by variable Prandtl number," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    7. Nur Adilah Liyana Aladdin & Norfifah Bachok, 2021. "Duality Solutions in Hydromagnetic Flow of SWCNT-MWCNT/Water Hybrid Nanofluid over Vertical Moving Slender Needle," Mathematics, MDPI, vol. 9(22), pages 1-17, November.
    8. Chih-Hong Lin, 2020. "Permanent-Magnet Synchronous Motor Drive System Using Backstepping Control with Three Adaptive Rules and Revised Recurring Sieved Pollaczek Polynomials Neural Network with Reformed Grey Wolf Optimizat," Energies, MDPI, vol. 13(22), pages 1-33, November.
    9. Changhwan Lim & Jonghwi Choi & Hyungdae Kim, 2021. "Experimental Investigation of the Heat Transfer Characteristics and Operation Limits of a Fork-Type Heat Pipe for Passive Cooling of a Spent Fuel Pool," Energies, MDPI, vol. 14(23), pages 1-24, November.
    10. Sumera Dero & Azizah Mohd Rohni & Azizan Saaban & Ilyas Khan, 2019. "Dual Solutions and Stability Analysis of Micropolar Nanofluid Flow with Slip Effect on Stretching/Shrinking Surfaces," Energies, MDPI, vol. 12(23), pages 1-20, November.
    11. Najiyah Safwa Khashi’ie & Norihan Md Arifin & Ioan Pop, 2020. "Mixed Convective Stagnation Point Flow towards a Vertical Riga Plate in Hybrid Cu-Al 2 O 3 /Water Nanofluid," Mathematics, MDPI, vol. 8(6), pages 1-21, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:23:p:7972-:d:690694. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.