IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i23p7901-d687385.html
   My bibliography  Save this article

A Step-by-Step Design for Low-Pass Input Filter of the Single-Stage Converter

Author

Listed:
  • Qingqing He

    (The School of Automation, Wuhan University of Technology, Wuhan 430070, China)

  • Lei Liu

    (The School of Automation, Wuhan University of Technology, Wuhan 430070, China)

  • Mingyang Qiu

    (The School of Automation, Wuhan University of Technology, Wuhan 430070, China)

  • Quanming Luo

    (State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, China)

Abstract

Active power factor correction converters are often introduced as the front stage of power electronic equipment to improve the power factor and eliminate higher harmonics. A Boost or Buck-Boost converter operating in discontinuous current mode is always adopted to achieve high power factor correction. In addition, the input current contains a large amount of higher harmonics, and a low-pass input filter is commonly adopted to filter it out. In this paper, a single-stage high-frequency AC/AC converter is taken as an example to demonstrate the design method of a passive low-pass filter. Firstly, the input side of the grid needs to meet the power factor and harmonic requirements. The preset parameters are set to a range to characterize the performance of the LC filter. The quantitative design method of input filter is proposed and summarized. Moreover, the sensitivity of the filter parameters is analyzed, providing a direction in practical applications. Preset parameters are all proved to conform to the preset range through PSIM simulation. Finally, a 130-W prototype is established to verify the correction of proposed design method. The power factor is around 0.935 and harmonic content in the input current is about 26.4%. All requirements can be satisfied.

Suggested Citation

  • Qingqing He & Lei Liu & Mingyang Qiu & Quanming Luo, 2021. "A Step-by-Step Design for Low-Pass Input Filter of the Single-Stage Converter," Energies, MDPI, vol. 14(23), pages 1-25, November.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:23:p:7901-:d:687385
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/23/7901/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/23/7901/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hoseinzadeh, Siamak & Ghasemi, Mohammad Hadi & Heyns, Stephan, 2020. "Application of hybrid systems in solution of low power generation at hot seasons for micro hydro systems," Renewable Energy, Elsevier, vol. 160(C), pages 323-332.
    2. Yuxing Liu & Jiazhu Xu & Zhikang Shuai & Yong Li & Yanjian Peng & Chonggan Liang & Guiping Cui & Sijia Hu & Mingmin Zhang & Bin Xie, 2020. "A Novel Harmonic Suppression Traction Transformer with Integrated Filtering Inductors for Railway Systems," Energies, MDPI, vol. 13(2), pages 1-18, January.
    3. Jing Liu & Zhigang Liu, 2017. "Harmonic Analyzing of the Double PWM Converter in DFIG Based on Mathematical Model," Energies, MDPI, vol. 10(12), pages 1-19, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Siamak Hoseinzadeh & Daniele Groppi & Adriana Scarlet Sferra & Umberto Di Matteo & Davide Astiaso Garcia, 2022. "The PRISMI Plus Toolkit Application to a Grid-Connected Mediterranean Island," Energies, MDPI, vol. 15(22), pages 1-14, November.
    2. Hoseinzadeh, Siamak & Astiaso Garcia, Davide & Huang, Lizhen, 2023. "Grid-connected renewable energy systems flexibility in Norway islands’ Decarbonization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    3. Andrea Mariscotti & Leonardo Sandrolini, 2021. "Detection of Harmonic Overvoltage and Resonance in AC Railways Using Measured Pantograph Electrical Quantities," Energies, MDPI, vol. 14(18), pages 1-22, September.
    4. Weijie Zhou & Huimin Jiang & Jiaxin Chang, 2023. "Forecasting Renewable Energy Generation Based on a Novel Dynamic Accumulation Grey Seasonal Model," Sustainability, MDPI, vol. 15(16), pages 1-26, August.
    5. Gilani, Hooman Azad & Hoseinzadeh, Siamak & Karimi, Hirou & Karimi, Ako & Hassanzadeh, Amir & Garcia, Davide Astiaso, 2021. "Performance analysis of integrated solar heat pump VRF system for the low energy building in Mediterranean island," Renewable Energy, Elsevier, vol. 174(C), pages 1006-1019.
    6. Popescu, Daniela & Dragomirescu, Andrei, 2024. "Cost-benefit analysis of a hydro-solar microsystem with Archimedean screw hydro turbine sized for a prosumer building," Renewable Energy, Elsevier, vol. 226(C).
    7. Khan, Irfan & Hou, Fujun & Irfan, Muhammad & Zakari, Abdulrasheed & Le, Hoang Phong, 2021. "Does energy trilemma a driver of economic growth? The roles of energy use, population growth, and financial development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    8. Yang, Zhikai & Liu, Pan & Xia, Qian & Li, He & Cheng, Qian & Cheng, Lei, 2024. "Operating rules for hydro-photovoltaic systems: A variance-based sensitivity analysis," Applied Energy, Elsevier, vol. 372(C).
    9. Hassan, Rakibul & Das, Barun K. & Hasan, Mahmudul, 2022. "Integrated off-grid hybrid renewable energy system optimization based on economic, environmental, and social indicators for sustainable development," Energy, Elsevier, vol. 250(C).
    10. Ruixuan Yang & Fulin Zhou & Kai Zhong, 2020. "A Harmonic Impedance Identification Method of Traction Network Based on Data Evolution Mechanism," Energies, MDPI, vol. 13(8), pages 1-15, April.
    11. Jie Liu & Quan Shi & Ruilian Han & Juan Yang, 2021. "A Hybrid GA–PSO–CNN Model for Ultra-Short-Term Wind Power Forecasting," Energies, MDPI, vol. 14(20), pages 1-22, October.
    12. Velásquez, Laura & Romero-Menco, Fredys & Rubio-Clemente, Ainhoa & Posada, Alejandro & Chica, Edwin, 2024. "Numerical optimization and experimental validation of the runner of a gravitational water vortex hydraulic turbine with a spiral inlet channel and a conical basin," Renewable Energy, Elsevier, vol. 220(C).
    13. Daliang Yang & Li Yin & Shengguang Xu & Ning Wu, 2018. "Power and Voltage Control for Single-Phase Cascaded H-Bridge Multilevel Converters under Unbalanced Loads," Energies, MDPI, vol. 11(9), pages 1-18, September.
    14. Xunjun Chen & Zhigang Liu, 2019. "Impedance Modeling and Stability Analysis of the Converters in a Double-Fed Induction Generator (DFIG)-Based System," Energies, MDPI, vol. 12(13), pages 1-23, June.
    15. Tapia, A. & R. del Nozal, A. & Reina, D.G. & Millán, P., 2021. "Three-dimensional optimization of penstock layouts for micro-hydropower plants using genetic algorithms," Applied Energy, Elsevier, vol. 301(C).
    16. Ammar A. Melaibari & Abdullah M. Abdul-Aziz & Nidal H. Abu-Hamdeh, 2022. "Design and Optimization of a Backup Renewable Energy Station for Photovoltaic Hybrid System in the New Jeddah Industrial City," Sustainability, MDPI, vol. 14(24), pages 1-19, December.
    17. Jiming Chen & Ke Ning & Xingzhi Xin & Fuhao Shi & Qing Zhang & Chaolin Li, 2022. "Day-Ahead Optimal Scheduling of an Integrated Energy System Based on a Piecewise Self-Adaptive Particle Swarm Optimization Algorithm," Energies, MDPI, vol. 15(3), pages 1-18, January.
    18. de Oliveira, Glauber Cardoso & Bertone, Edoardo & Stewart, Rodney A., 2022. "Challenges, opportunities, and strategies for undertaking integrated precinct-scale energy–water system planning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    19. Bin Ye & Minhua Zhou & Dan Yan & Yin Li, 2020. "Multi-Objective Decision-Making for Hybrid Renewable Energy Systems for Cities: A Case Study of Xiongan New District in China," Energies, MDPI, vol. 13(23), pages 1-25, November.
    20. Dileep Kumar & Morshed Alam & Jay G. Sanjayan, 2021. "Retrofitting Building Envelope Using Phase Change Materials and Aerogel Render for Adaptation to Extreme Heatwave: A Multi-Objective Analysis Considering Heat Stress, Energy, Environment, and Cost," Sustainability, MDPI, vol. 13(19), pages 1-29, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:23:p:7901-:d:687385. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.