IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i22p7567-d677771.html
   My bibliography  Save this article

Reducing the Dimensions of the Ship’s Main Switchboard—A Contribution to Energy Efficiency

Author

Listed:
  • Maja Krčum

    (Faculty of Maritime Studies, University of Split, Ul. Ruđera Boškovića 37, 21000 Split, Croatia)

  • Marko Zubčić

    (Faculty of Maritime Studies, University of Split, Ul. Ruđera Boškovića 37, 21000 Split, Croatia)

  • Nediljko Kaštelan

    (Faculty of Maritime Studies, University of Split, Ul. Ruđera Boškovića 37, 21000 Split, Croatia)

  • Anita Gudelj

    (Faculty of Maritime Studies, University of Split, Ul. Ruđera Boškovića 37, 21000 Split, Croatia)

Abstract

Energy efficiency generally implies the efficient use of energy in all sectors of final consumption—industry, services, agriculture, households and transport. Shipping accounts for nearly 3% of global greenhouse gas emissions, making it the sixth largest CO 2 producer in the world. This is a result of inefficient ship design, lack of planning and optimal use of resources. As the transport sector expands, so does the pressure for a greener and cleaner maritime industry. Reducing fuel consumption is a major driver of the need for energy efficiency on ships. In this paper, due to the importance of maritime transport, we observed the impact of reducing the dimensions of the main switchboard as a contribution to energy efficiency. This contribution is not of great importance as is the case with the optimization of the navigation route, etc., but it certainly affects the weight and, thus, the fuel consumption, which contributes to energy efficiency in the designed system. The aim of this paper is to optimize the design of the main switchboard by using 2D simulations of possible bus topologies, in order to develop six different busbar models and find one that best meets the requirements. The simulation results indicate the optimal location and dimensions of the busbars in the main switchboard in accordance with the switchgear parameters. Apart from the change in layout and dimensions of the busbars, the replacement of conventional instrument transformers with new current/voltage sensors contributes to a significant reduction in the weight and size of the switchboard, which ultimately benefits energy efficiency.

Suggested Citation

  • Maja Krčum & Marko Zubčić & Nediljko Kaštelan & Anita Gudelj, 2021. "Reducing the Dimensions of the Ship’s Main Switchboard—A Contribution to Energy Efficiency," Energies, MDPI, vol. 14(22), pages 1-21, November.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:22:p:7567-:d:677771
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/22/7567/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/22/7567/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Michał Szulborski & Sebastian Łapczyński & Łukasz Kolimas & Łukasz Kozarek & Desire Dauphin Rasolomampionona, 2020. "Calculations of Electrodynamic Forces in Three-Phase Asymmetric Busbar System with the Use of FEM," Energies, MDPI, vol. 13(20), pages 1-26, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michał Szulborski & Sebastian Łapczyński & Łukasz Kolimas, 2021. "Thermal Analysis of Heat Distribution in Busbars during Rated Current Flow in Low-Voltage Industrial Switchgear," Energies, MDPI, vol. 14(9), pages 1-23, April.
    2. Elzbieta Lesniewska & Pawel Witczak, 2024. "Problems during the Design and Testing of Instrument, Special and Power Transformers: The Outlook," Energies, MDPI, vol. 17(2), pages 1-5, January.
    3. Michał Szulborski & Sebastian Łapczyński & Łukasz Kolimas & Łukasz Kozarek & Desire Dauphin Rasolomampionona & Tomasz Żelaziński & Adam Smolarczyk, 2021. "Transient Thermal Analysis of NH000 gG 100A Fuse Link Employing Finite Element Method," Energies, MDPI, vol. 14(5), pages 1-18, March.
    4. Michał Szulborski & Sebastian Łapczyński & Łukasz Kolimas & Daniel Zalewski, 2021. "Transient Thermal Analysis of the Circuit Breaker Current Path with the Use of FEA Simulation," Energies, MDPI, vol. 14(9), pages 1-24, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:22:p:7567-:d:677771. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.