IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i20p5477-d431624.html
   My bibliography  Save this article

Calculations of Electrodynamic Forces in Three-Phase Asymmetric Busbar System with the Use of FEM

Author

Listed:
  • Michał Szulborski

    (Institute of Electrical Power Engineering, Warsaw University of Technology, 00-662 Warsaw, Poland)

  • Sebastian Łapczyński

    (Institute of Electrical Power Engineering, Warsaw University of Technology, 00-662 Warsaw, Poland)

  • Łukasz Kolimas

    (Institute of Electrical Power Engineering, Warsaw University of Technology, 00-662 Warsaw, Poland)

  • Łukasz Kozarek

    (ILF Consulting Engineers Polska Sp. z o.o., 02-823 Warsaw, Poland)

  • Desire Dauphin Rasolomampionona

    (Institute of Electrical Power Engineering, Warsaw University of Technology, 00-662 Warsaw, Poland)

Abstract

Proper busbar selection based on analytical calculations is of great importance in terms of power grid functioning and its safe usage. Experimental tests concerning busbars are very expensive and difficult to be executed. Therefore, the great advantage for setting the valid parameters for busbar systems components are analytical calculations supported by FEM (finite element method) modelling and analysis. Determining electrodynamic forces in busbar systems tends to be crucial with regard to subsidiary, dependent parameters. In this paper analytical calculations of asymmetric three-phase busbar system were carried out. Key parameters, like maximal electrodynamic forces value, mechanical strength value, busbar natural frequency, etc., were calculated. Calculations were conducted with an ANSYS model of a parallel asymmetric busbar system, which confirmed the obtained results. Moreover, showing that a model based on finite elements tends to be very helpful in the selection of unusually-shaped busbars in various electrotechnical applications, like switchgear.

Suggested Citation

  • Michał Szulborski & Sebastian Łapczyński & Łukasz Kolimas & Łukasz Kozarek & Desire Dauphin Rasolomampionona, 2020. "Calculations of Electrodynamic Forces in Three-Phase Asymmetric Busbar System with the Use of FEM," Energies, MDPI, vol. 13(20), pages 1-26, October.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:20:p:5477-:d:431624
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/20/5477/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/20/5477/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Reza Khademi-Zahedi & Pouyan Alimouri, 2018. "Finite Element Analysis to the Effect of Thermo-Mechanical Loads on Stress Distribution in Buried Polyethylene Gas Pipes Jointed by Electrofusion Sockets, Repaired by PE Patches," Energies, MDPI, vol. 11(10), pages 1-24, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elzbieta Lesniewska & Pawel Witczak, 2024. "Problems during the Design and Testing of Instrument, Special and Power Transformers: The Outlook," Energies, MDPI, vol. 17(2), pages 1-5, January.
    2. Maja Krčum & Marko Zubčić & Nediljko Kaštelan & Anita Gudelj, 2021. "Reducing the Dimensions of the Ship’s Main Switchboard—A Contribution to Energy Efficiency," Energies, MDPI, vol. 14(22), pages 1-21, November.
    3. Michał Szulborski & Sebastian Łapczyński & Łukasz Kolimas & Daniel Zalewski, 2021. "Transient Thermal Analysis of the Circuit Breaker Current Path with the Use of FEA Simulation," Energies, MDPI, vol. 14(9), pages 1-24, April.
    4. Michał Szulborski & Sebastian Łapczyński & Łukasz Kolimas & Łukasz Kozarek & Desire Dauphin Rasolomampionona & Tomasz Żelaziński & Adam Smolarczyk, 2021. "Transient Thermal Analysis of NH000 gG 100A Fuse Link Employing Finite Element Method," Energies, MDPI, vol. 14(5), pages 1-18, March.
    5. Michał Szulborski & Sebastian Łapczyński & Łukasz Kolimas, 2021. "Thermal Analysis of Heat Distribution in Busbars during Rated Current Flow in Low-Voltage Industrial Switchgear," Energies, MDPI, vol. 14(9), pages 1-23, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Łukasz Kozarek & Hubert Cichecki & Mateusz Bogacki & Mykhailo Tyryk & Michał Szulborski & Sebastian Łapczyński & Łukasz Kolimas & Desire Rasolomampionona & Andrzej Lange & Przemysław Berowski & Przemy, 2023. "Impact of the Short-Circuit Current Value on the Operation of Overhead Connections in High-Voltage Power Stations," Energies, MDPI, vol. 16(8), pages 1-27, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:20:p:5477-:d:431624. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.