Effects of Diffusion, Adsorption, and Hysteresis on Huff-n-Puff Performance in Ultratight Reservoirs with Different Fluid Types and Injection Gases
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Yuan Zhang & Jinghong Hu & Qi Zhang, 2019. "Simulation Study of CO 2 Huff-n-Puff in Tight Oil Reservoirs Considering Molecular Diffusion and Adsorption," Energies, MDPI, vol. 12(11), pages 1-15, June.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zhengdong Lei & Yishan Liu & Rui Wang & Lei Li & Yuqi Liu & Yuanqing Zhang, 2022. "A Microfluidic Experiment on CO 2 Injection for Enhanced Oil Recovery in a Shale Oil Reservoir with High Temperature and Pressure," Energies, MDPI, vol. 15(24), pages 1-15, December.
- Li, Zongfa & Liu, Jiahui & Su, Yuliang & Fan, Liyao & Hao, Yongmao & kanjibayi, Bahedawulieti & Huang, Lijuan & Ren, Shaoran & Sun, Yongquan & Liu, Ran, 2023. "Influences of diffusion and advection on dynamic oil-CO2 mixing during CO2 EOR and storage process: Experimental study and numerical modeling at pore-scales," Energy, Elsevier, vol. 267(C).
- Aaditya Khanal & Md Fahim Shahriar, 2023. "Optimization of CO 2 Huff-n-Puff in Unconventional Reservoirs with a Focus on Pore Confinement Effects, Fluid Types, and Completion Parameters," Energies, MDPI, vol. 16(5), pages 1-23, February.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Diego Manfre Jaimes & Ian D. Gates & Matthew Clarke, 2019. "Reducing the Energy and Steam Consumption of SAGD Through Cyclic Solvent Co-Injection," Energies, MDPI, vol. 12(20), pages 1-28, October.
- Kang Ma & Hanqiao Jiang & Junjian Li & Rongda Zhang & Kangqi Shen & Yu Zhou, 2020. "A Novel Assisted Gas–Oil Countercurrent EOR Technique for Attic Oil in Fault-Block Reservoirs," Energies, MDPI, vol. 13(2), pages 1-15, January.
- Minxing Si & Ling Bai & Ke Du, 2021. "Discovering Energy Consumption Patterns with Unsupervised Machine Learning for Canadian In Situ Oil Sands Operations," Sustainability, MDPI, vol. 13(4), pages 1-16, February.
More about this item
Keywords
huff-n-puff; ultratight reservoir; diffusion; adsorption; hysteresis;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7379-:d:673153. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.