IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i21p7336-d672232.html
   My bibliography  Save this article

Development of Stable Mixed Microbiota for High Yield Power to Methane Conversion

Author

Listed:
  • Márk Szuhaj

    (Department of Biotechnology, University of Szeged, 6726 Szeged, Hungary)

  • Roland Wirth

    (Department of Biotechnology, University of Szeged, 6726 Szeged, Hungary)

  • Zoltán Bagi

    (Department of Biotechnology, University of Szeged, 6726 Szeged, Hungary)

  • Gergely Maróti

    (Institute of Plant Biology, Biological Research Centre, 6726 Szeged, Hungary)

  • Gábor Rákhely

    (Department of Biotechnology, University of Szeged, 6726 Szeged, Hungary
    Institute of Biophysics, Biological Research Centre, 6726, Szeged, Hungary)

  • Kornél L. Kovács

    (Department of Biotechnology, University of Szeged, 6726 Szeged, Hungary
    Department of Oral Biology and Experimental Dentistry, University of Szeged, 6720 Szeged, Hungary)

Abstract

The performance of a mixed microbial community was tested in lab-scale power-to-methane reactors at 55 °C. The main aim was to uncover the responses of the community to starvation and stoichiometric H 2 /CO 2 supply as the sole substrate. Fed-batch reactors were inoculated with the fermentation effluent of a thermophilic biogas plant. Various volumes of pure H 2 /CO 2 gas mixtures were injected into the headspace daily and the process parameters were followed. Gas volumes and composition were measured by gas-chromatography, the headspace was replaced with N 2 prior to the daily H 2 /CO 2 injection. Total DNA samples, collected at the beginning and end (day 71), were analyzed by metagenome sequencing. Low levels of H 2 triggered immediate CH 4 evolution utilizing CO 2 /HCO 3 − dissolved in the fermentation effluent. Biomethanation continued when H 2 /CO 2 was supplied. On the contrary, biomethane formation was inhibited at higher initial H 2 doses and concomitant acetate formation indicated homoacetogenesis. Biomethane production started upon daily delivery of stoichiometric H 2 /CO 2 . The fed-batch operational mode allowed high H 2 injection and consumption rates albeit intermittent operation conditions. Methane was enriched up to 95% CH 4 content and the H 2 consumption rate attained a remarkable 1000 mL·L −1 ·d −1 . The microbial community spontaneously selected the genus Methanothermobacter in the enriched cultures.

Suggested Citation

  • Márk Szuhaj & Roland Wirth & Zoltán Bagi & Gergely Maróti & Gábor Rákhely & Kornél L. Kovács, 2021. "Development of Stable Mixed Microbiota for High Yield Power to Methane Conversion," Energies, MDPI, vol. 14(21), pages 1-17, November.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7336-:d:672232
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/21/7336/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/21/7336/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. D’ Silva, Tinku Casper & Isha, Adya & Chandra, Ram & Vijay, Virendra Kumar & Subbarao, Paruchuri Mohan V. & Kumar, Ritunesh & Chaudhary, Ved Prakash & Singh, Harjit & Khan, Abid Ali & Tyagi, Vinay Kum, 2021. "Enhancing methane production in anaerobic digestion through hydrogen assisted pathways – A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    2. Sharma, Sunita & Ghoshal, Sib Krishna, 2015. "Hydrogen the future transportation fuel: From production to applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1151-1158.
    3. Zoltán Csedő & Máté Zavarkó & Balázs Vaszkun & Sára Koczkás, 2021. "Hydrogen Economy Development Opportunities by Inter-Organizational Digital Knowledge Networks," Sustainability, MDPI, vol. 13(16), pages 1-26, August.
    4. Lund, Peter D. & Lindgren, Juuso & Mikkola, Jani & Salpakari, Jyri, 2015. "Review of energy system flexibility measures to enable high levels of variable renewable electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 785-807.
    5. Peter Menzel & Kim Lee Ng & Anders Krogh, 2016. "Fast and sensitive taxonomic classification for metagenomics with Kaiju," Nature Communications, Nature, vol. 7(1), pages 1-9, September.
    6. Götz, Manuel & Lefebvre, Jonathan & Mörs, Friedemann & McDaniel Koch, Amy & Graf, Frank & Bajohr, Siegfried & Reimert, Rainer & Kolb, Thomas, 2016. "Renewable Power-to-Gas: A technological and economic review," Renewable Energy, Elsevier, vol. 85(C), pages 1371-1390.
    7. Edit Gorliczay & Imre Boczonádi & Nikolett Éva Kiss & Florence Alexandra Tóth & Sándor Attila Pabar & Borbála Biró & László Renátó Kovács & János Tamás, 2021. "Microbiological Effectivity Evaluation of New Poultry Farming Organic Waste Recycling," Agriculture, MDPI, vol. 11(7), pages 1-21, July.
    8. Jamie A FitzGerald & Eoin Allen & David M Wall & Stephen A Jackson & Jerry D Murphy & Alan D W Dobson, 2015. "Methanosarcina Play an Important Role in Anaerobic Co-Digestion of the Seaweed Ulva lactuca: Taxonomy and Predicted Metabolism of Functional Microbial Communities," PLOS ONE, Public Library of Science, vol. 10(11), pages 1-21, November.
    9. Thema, M. & Bauer, F. & Sterner, M., 2019. "Power-to-Gas: Electrolysis and methanation status review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 775-787.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Attila R. Imre, 2022. "Seasonal Energy Storage with Power-to-Methane Technology," Energies, MDPI, vol. 15(3), pages 1-2, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pintér, Gábor, 2024. "The development of global power-to-methane potentials between 2000 and 2020: A comparative overview of international projects," Applied Energy, Elsevier, vol. 353(PA).
    2. Pastore, Lorenzo Mario & Lo Basso, Gianluigi & de Santoli, Livio, 2022. "Can the renewable energy share increase in electricity and gas grids takes out the competitiveness of gas-driven CHP plants for distributed generation?," Energy, Elsevier, vol. 256(C).
    3. Duncan, Corey & Roche, Robin & Jemei, Samir & Pera, Marie-Cécile, 2022. "Techno-economical modelling of a power-to-gas system for plant configuration evaluation in a local context," Applied Energy, Elsevier, vol. 315(C).
    4. Qi, Meng & Park, Jinwoo & Lee, Inkyu & Moon, Il, 2022. "Liquid air as an emerging energy vector towards carbon neutrality: A multi-scale systems perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    5. Andrea Barbaresi & Mirko Morini & Agostino Gambarotta, 2022. "Review on the Status of the Research on Power-to-Gas Experimental Activities," Energies, MDPI, vol. 15(16), pages 1-32, August.
    6. Yunesky Masip Macía & Pablo Rodríguez Machuca & Angel Alexander Rodríguez Soto & Roberto Carmona Campos, 2021. "Green Hydrogen Value Chain in the Sustainability for Port Operations: Case Study in the Region of Valparaiso, Chile," Sustainability, MDPI, vol. 13(24), pages 1-17, December.
    7. Sinn, Hans-Werner, 2017. "Buffering volatility: A study on the limits of Germany's energy revolution," European Economic Review, Elsevier, vol. 99(C), pages 130-150.
    8. Chauvy, Remi & Dubois, Lionel & Lybaert, Paul & Thomas, Diane & De Weireld, Guy, 2020. "Production of synthetic natural gas from industrial carbon dioxide," Applied Energy, Elsevier, vol. 260(C).
    9. Pilpola, Sannamari & Lund, Peter D., 2018. "Effect of major policy disruptions in energy system transition: Case Finland," Energy Policy, Elsevier, vol. 116(C), pages 323-336.
    10. Azadeh Maroufmashat & Michael Fowler, 2017. "Transition of Future Energy System Infrastructure; through Power-to-Gas Pathways," Energies, MDPI, vol. 10(8), pages 1-22, July.
    11. Hermesmann, M. & Grübel, K. & Scherotzki, L. & Müller, T.E., 2021. "Promising pathways: The geographic and energetic potential of power-to-x technologies based on regeneratively obtained hydrogen," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    12. Kim, Jeongdong & Qi, Meng & Park, Jinwoo & Moon, Il, 2023. "Revealing the impact of renewable uncertainty on grid-assisted power-to-X: A data-driven reliability-based design optimization approach," Applied Energy, Elsevier, vol. 339(C).
    13. Schlund, David & Theile, Philipp, 2022. "Simultaneity of green energy and hydrogen production: Analysing the dispatch of a grid-connected electrolyser," Energy Policy, Elsevier, vol. 166(C).
    14. Drechsler, Carsten & Agar, David W., 2020. "Intensified integrated direct air capture - power-to-gas process based on H2O and CO2 from ambient air," Applied Energy, Elsevier, vol. 273(C).
    15. La Guardia, Marcello & D'Ippolito, Filippo & Cellura, Maurizio, 2022. "A GIS-based optimization model finalized to the localization of new power-to-gas plants: The case study of Sicily (Italy)," Renewable Energy, Elsevier, vol. 197(C), pages 828-835.
    16. Sayama, Shogo & Yamamoto, Seiji, 2022. "A 6-kW thermally self-sustained two-stage CO2 methanation reactor: design and experimental evaluation of steady-state performance under full-load conditions," Applied Energy, Elsevier, vol. 325(C).
    17. Xiong, Bobby & Predel, Johannes & Crespo del Granado, Pedro & Egging-Bratseth, Ruud, 2021. "Spatial flexibility in redispatch: Supporting low carbon energy systems with Power-to-Gas," Applied Energy, Elsevier, vol. 283(C).
    18. Maestre, V.M. & Ortiz, A. & Ortiz, I., 2021. "Challenges and prospects of renewable hydrogen-based strategies for full decarbonization of stationary power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    19. Madalina-Gabriela ANGHEL & Constantin ANGHELACHE & Alexandru MANOLE & Ana CARP, 2017. "The Strategy Of The European Union Member States In The Field Of Energy," Romanian Statistical Review Supplement, Romanian Statistical Review, vol. 65(8), pages 19-34, August.
    20. Larscheid, Patrick & Lück, Lara & Moser, Albert, 2018. "Potential of new business models for grid integrated water electrolysis," Renewable Energy, Elsevier, vol. 125(C), pages 599-608.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7336-:d:672232. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.