IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i21p7083-d668235.html
   My bibliography  Save this article

Critical Conditions for the Ignition of a Gel Fuel under Different Heating Schemes

Author

Listed:
  • Olga Gaidukova

    (Heat and Mass Transfer Simulation Laboratory, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia)

  • Pavel Strizhak

    (Heat and Mass Transfer Simulation Laboratory, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia)

Abstract

A model was developed to research the critical conditions and time characteristics of the ignition of gel fuels in the course of conductive, convective, radiant and mixed heat transfer. MATLAB was used for numerical modeling. Original MATLAB code was established pursuant to the developed mathematical model. For gel fuel ignition at initial temperatures corresponding to cryogenic storage conditions with different heating schemes, a numerical analysis of interconnected processes of heat and mass transfer in the chemical reaction conditions and exothermic and endothermic phase transitions was conducted. The model was tested by comparing the theoretical results with the experimental data. Dependencies were established between the key process characteristic (i.e., the ignition delay time) and the ambient temperature when the following parameters were varied: emissivity, heat emission coefficient, activation energy and pre-exponential factor of the fuel vapor oxidation reaction. The critical values of the main parameters of the energy source were determined. For these values, gel fuel ignition conditions were consistently realized for each heating scheme. The critical heat fluxes necessary and sufficient for the ignition of typical gel fuels were determined.

Suggested Citation

  • Olga Gaidukova & Pavel Strizhak, 2021. "Critical Conditions for the Ignition of a Gel Fuel under Different Heating Schemes," Energies, MDPI, vol. 14(21), pages 1-16, October.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7083-:d:668235
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/21/7083/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/21/7083/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jonghan Won & Seung Wook Baek & Hyemin Kim & Hookyung Lee, 2019. "The Viscosity and Combustion Characteristics of Single-Droplet Water-Diesel Emulsion," Energies, MDPI, vol. 12(10), pages 1-12, May.
    2. Qin-Liu Cao & Wei-Tao Wu & Wen-He Liao & Feng Feng & Mehrdad Massoudi, 2020. "Effects of Temperature on the Flow and Heat Transfer in Gel Fuels: A Numerical Study," Energies, MDPI, vol. 13(4), pages 1-17, February.
    3. Zejun Liu & Xiaoping Hu & Zhen He & Jianjun Wu, 2012. "Experimental Study on the Combustion and Microexplosion of Freely Falling Gelled Unsymmetrical Dimethylhydrazine (UDMH) Fuel Droplets," Energies, MDPI, vol. 5(8), pages 1-11, August.
    4. Sun, Daoan & Cai, Wenzhe & Li, Chunying & Lu, Jian, 2021. "Experimental study on atomization characteristics of high-energy-density fuels using a fuel slinger," Energy, Elsevier, vol. 234(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mhadi A. Ismael & Morgan R. Heikal & A. Rashid A. Aziz & Cyril Crua, 2018. "The Effect of Fuel Injection Equipment of Water-In-Diesel Emulsions on Micro-Explosion Behaviour," Energies, MDPI, vol. 11(7), pages 1-13, June.
    2. Donggi Lee & Jonghan Won & Seung Wook Baek & Hyemin Kim, 2018. "Autoignition Behavior of an Ethanol-Methylcellulose Gel Droplet in a Hot Environment," Energies, MDPI, vol. 11(8), pages 1-11, August.
    3. Dmitrii V. Antonov & Roman M. Fedorenko & Leonid S. Yanovskiy & Pavel A. Strizhak, 2023. "Physical and Mathematical Models of Micro-Explosions: Achievements and Directions of Improvement," Energies, MDPI, vol. 16(16), pages 1-16, August.
    4. Svetlana Kropotova & Pavel Strizhak, 2021. "Collisions of Liquid Droplets in a Gaseous Medium under Conditions of Intense Phase Transformations: Review," Energies, MDPI, vol. 14(19), pages 1-27, September.
    5. Dmitrii V. Antonov & Roman M. Fedorenko & Pavel A. Strizhak, 2022. "Micro-Explosion Phenomenon: Conditions and Benefits," Energies, MDPI, vol. 15(20), pages 1-19, October.
    6. Jin Wu & Frederick Nii Ofei Bruce & Xin Bai & Xuan Ren & Yang Li, 2023. "Insights into the Reaction Kinetics of Hydrazine-Based Fuels: A Comprehensive Review of Theoretical and Experimental Methods," Energies, MDPI, vol. 16(16), pages 1-23, August.
    7. Zejun Liu & Jianjun Wu & He Zhen & Xiaoping Hu, 2013. "Numerical Simulation on Head-On Binary Collision of Gel Propellant Droplets," Energies, MDPI, vol. 6(1), pages 1-16, January.
    8. Hao Zhou & Feng Feng & Qin-Liu Cao & Changsheng Zhou & Wei-Tao Wu & Mehrdad Massoudi, 2022. "Heat Transfer and Flow of a Gel Fuel in Corrugated Channels," Energies, MDPI, vol. 15(19), pages 1-19, October.
    9. Wang, Shangning & Qiu, Shuyi & Li, Xuesong & Zhang, Peng, 2024. "Modeling non-monotonic variation of plume angle with superheat index of flash boiling spray," Energy, Elsevier, vol. 306(C).
    10. Roman Volkov & Timur Valiullin & Olga Vysokomornaya, 2021. "Spraying of Composite Liquid Fuels Based on Types of Coal Preparation Waste: Current Problems and Achievements: Review," Energies, MDPI, vol. 14(21), pages 1-17, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7083-:d:668235. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.