IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i21p6976-d663641.html
   My bibliography  Save this article

A Study on the Power Line Operation Strategy by the Energy Storage System to Ensure Hosting Capacity of Distribution Feeder with Electrical Vehicle Charging Infrastructure

Author

Listed:
  • Byungki Kim

    (Electric Power System Research Team, Korea Institute of Energy Research (KIER), 200 Haemajihaean-ro, Gujwa-eup, Jeju-si 63357, Jeju-do, Korea)

  • Jae-Bum Park

    (Electric Power Energy Center (EPEC), Korea Testing & Research Institute (KTR), 42-27 Yangji-myeon, Cheoin-gu, Youngin-si 17162, Gyeonggi-do, Korea)

  • Dae-Jin Kim

    (Electric Power System Research Team, Korea Institute of Energy Research (KIER), 200 Haemajihaean-ro, Gujwa-eup, Jeju-si 63357, Jeju-do, Korea)

Abstract

The introduction of a complex electrical vehicle charging (EVC) infrastructure consisting of an electrical vehicle (EV) charger and renewable energy source (RES) in the distribution system has been required as an important countermeasure for global environmental issues. However, the problems for hosting capacity and power stability of the distribution feeder can be caused by the penetration of lager scaled RES and EVC infrastructure. Further, it is required for the efficient operation method to prevent congestion and to ensure hosting capacity for the distribution feeder due to the increase of variable RES and EVC infrastructure in the distribution systems. In order to solve these problems, it is necessary to develop a technology which is capable of stably introducing an EVC infrastructure without reinforcing the existing distribution system. Therefore, to maintain the existing hosting capacity of distribution feeder and allowable limits, this paper presents a virtual power line (VPL) operation method using Energy Storage System (ESS) based on the power and voltage stabilization control to ensure hosting capacity of the EVS infrastructure. The proposed operation method is determined by optimal power compensation rate (PCR) and voltage compensation rate (VCR). Specifically, ESS for VPL is controlled according to the charging and discharging mode is operated according to the comparison value of the PCR and VCR. From the test results, it is verified that hosting capacity of the distribution system can be maintained using the proposed control method of ESS for VPL operation.

Suggested Citation

  • Byungki Kim & Jae-Bum Park & Dae-Jin Kim, 2021. "A Study on the Power Line Operation Strategy by the Energy Storage System to Ensure Hosting Capacity of Distribution Feeder with Electrical Vehicle Charging Infrastructure," Energies, MDPI, vol. 14(21), pages 1-17, October.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:6976-:d:663641
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/21/6976/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/21/6976/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Madina, Carlos & Zamora, Inmaculada & Zabala, Eduardo, 2016. "Methodology for assessing electric vehicle charging infrastructure business models," Energy Policy, Elsevier, vol. 89(C), pages 284-293.
    2. Rubino, Luigi & Capasso, Clemente & Veneri, Ottorino, 2017. "Review on plug-in electric vehicle charging architectures integrated with distributed energy sources for sustainable mobility," Applied Energy, Elsevier, vol. 207(C), pages 438-464.
    3. Dong, Xiaohong & Mu, Yunfei & Xu, Xiandong & Jia, Hongjie & Wu, Jianzhong & Yu, Xiaodan & Qi, Yan, 2018. "A charging pricing strategy of electric vehicle fast charging stations for the voltage control of electricity distribution networks," Applied Energy, Elsevier, vol. 225(C), pages 857-868.
    4. Serradilla, Javier & Wardle, Josey & Blythe, Phil & Gibbon, Jane, 2017. "An evidence-based approach for investment in rapid-charging infrastructure," Energy Policy, Elsevier, vol. 106(C), pages 514-524.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Oluwasola O. Ademulegun & Paul MacArtain & Bukola Oni & Neil J. Hewitt, 2022. "Multi-Stage Multi-Criteria Decision Analysis for Siting Electric Vehicle Charging Stations within and across Border Regions," Energies, MDPI, vol. 15(24), pages 1-28, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dae-Jin Kim & Kyung-Sang Ryu & Hee-Sang Ko & Byungki Kim, 2020. "Optimal Operation Strategy of ESS for EV Charging Infrastructure for Voltage Stabilization in a Secondary Feeder of a Distribution System," Energies, MDPI, vol. 13(1), pages 1-22, January.
    2. Baumgarte, Felix & Kaiser, Matthias & Keller, Robert, 2021. "Policy support measures for widespread expansion of fast charging infrastructure for electric vehicles," Energy Policy, Elsevier, vol. 156(C).
    3. Dong, Xiaohong & Mu, Yunfei & Xu, Xiandong & Jia, Hongjie & Wu, Jianzhong & Yu, Xiaodan & Qi, Yan, 2018. "A charging pricing strategy of electric vehicle fast charging stations for the voltage control of electricity distribution networks," Applied Energy, Elsevier, vol. 225(C), pages 857-868.
    4. Muratori, Matteo & Kontou, Eleftheria & Eichman, Joshua, 2019. "Electricity rates for electric vehicle direct current fast charging in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    5. Yian Yan & Huang Wang & Jiuchun Jiang & Weige Zhang & Yan Bao & Mei Huang, 2019. "Research on Configuration Methods of Battery Energy Storage System for Pure Electric Bus Fast Charging Station," Energies, MDPI, vol. 12(3), pages 1-17, February.
    6. Zou, Wenke & Sun, Yongjun & Gao, Dian-ce & Zhang, Xu & Liu, Junyao, 2023. "A review on integration of surging plug-in electric vehicles charging in energy-flexible buildings: Impacts analysis, collaborative management technologies, and future perspective," Applied Energy, Elsevier, vol. 331(C).
    7. Jiyuan Tan & Fuyu Liu & Na Xie & Weiwei Guo & Wenxiang Wu, 2022. "Dynamic Pricing Strategy of Charging Station Based on Traffic Assignment Simulation," Sustainability, MDPI, vol. 14(21), pages 1-19, November.
    8. Antonia Golab & Sebastian Zwickl-Bernhard & Hans Auer, 2022. "Minimum-Cost Fast-Charging Infrastructure Planning for Electric Vehicles along the Austrian High-Level Road Network," Energies, MDPI, vol. 15(6), pages 1-26, March.
    9. Yan Bao & Yu Luo & Weige Zhang & Mei Huang & Le Yi Wang & Jiuchun Jiang, 2018. "A Bi-Level Optimization Approach to Charging Load Regulation of Electric Vehicle Fast Charging Stations Based on a Battery Energy Storage System," Energies, MDPI, vol. 11(1), pages 1-21, January.
    10. Ma, Shao-Chao & Fan, Ying, 2020. "A deployment model of EV charging piles and its impact on EV promotion," Energy Policy, Elsevier, vol. 146(C).
    11. Dimanchev, Emil & Fleten, Stein-Erik & MacKenzie, Don & Korpås, Magnus, 2023. "Accelerating electric vehicle charging investments: A real options approach to policy design," Energy Policy, Elsevier, vol. 181(C).
    12. Mahmud, Khizir & Town, Graham E. & Morsalin, Sayidul & Hossain, M.J., 2018. "Integration of electric vehicles and management in the internet of energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 4179-4203.
    13. Shafqat Jawad & Junyong Liu, 2020. "Electrical Vehicle Charging Services Planning and Operation with Interdependent Power Networks and Transportation Networks: A Review of the Current Scenario and Future Trends," Energies, MDPI, vol. 13(13), pages 1-24, July.
    14. Md. Mosaraf Hossain Khan & Amran Hossain & Aasim Ullah & Molla Shahadat Hossain Lipu & S. M. Shahnewaz Siddiquee & M. Shafiul Alam & Taskin Jamal & Hafiz Ahmed, 2021. "Integration of Large-Scale Electric Vehicles into Utility Grid: An Efficient Approach for Impact Analysis and Power Quality Assessment," Sustainability, MDPI, vol. 13(19), pages 1-18, October.
    15. Boud Verbrugge & Mohammed Mahedi Hasan & Haaris Rasool & Thomas Geury & Mohamed El Baghdadi & Omar Hegazy, 2021. "Smart Integration of Electric Buses in Cities: A Technological Review," Sustainability, MDPI, vol. 13(21), pages 1-23, November.
    16. Anne Christine Lusk & Xin Li & Qiming Liu, 2023. "If the Government Pays for Full Home-Charger Installation, Would Affordable-Housing and Middle-Income Residents Buy Electric Vehicles?," Sustainability, MDPI, vol. 15(5), pages 1-26, March.
    17. Hao, Ran & Lu, Tianguang & Ai, Qian & Wang, Zhe & Wang, Xiaolong, 2020. "Distributed online learning and dynamic robust standby dispatch for networked microgrids," Applied Energy, Elsevier, vol. 274(C).
    18. Neaimeh, Myriam & Salisbury, Shawn D. & Hill, Graeme A. & Blythe, Philip T. & Scoffield, Don R. & Francfort, James E., 2017. "Analysing the usage and evidencing the importance of fast chargers for the adoption of battery electric vehicles," Energy Policy, Elsevier, vol. 108(C), pages 474-486.
    19. Bunga Aditi & Hafizah & Iskandar Muda, 2019. "The Effect of Services, Price Discount and Brand Equity on Consumer Purchase Decisions in Go-Jek a Technology Startup Transport," Academic Journal of Economic Studies, Faculty of Finance, Banking and Accountancy Bucharest,"Dimitrie Cantemir" Christian University Bucharest, vol. 5(2), pages 21-31, June.
    20. Bekli, Seyma & Boyacı, Burak & Zografos, Konstantinos G., 2021. "Enhancing the performance of one-way electric carsharing systems through the optimum deployment of fast chargers," Transportation Research Part B: Methodological, Elsevier, vol. 152(C), pages 118-139.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:6976-:d:663641. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.