IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i21p6886-d661045.html
   My bibliography  Save this article

A Comparative Study of High-Temperature Latent Heat Storage Systems

Author

Listed:
  • Alok Kumar Ray

    (Department of Energy Science and Engineering, University of Queensland-Indian Institute of Technology Delhi Academy of Research (UQIDAR), Indian Institute of Technology, Delhi 110016, India)

  • Dibakar Rakshit

    (Department of Energy Science and Engineering, Indian Institute of Technology, Delhi 110016, India)

  • K. Ravi Kumar

    (Department of Energy Science and Engineering, Indian Institute of Technology, Delhi 110016, India)

  • Hal Gurgenci

    (School of Mechanical and Mining Engineering, University of Queensland, Brisbane 4072, Australia)

Abstract

High-temperature latent heat storage (LHS) systems using a high-temperature phase change medium (PCM) could be a potential solution for providing dispatchable energy from concentrated solar power (CSP) systems and for storing surplus energy from photovoltaic and wind power. In addition, ultra-high-temperature (>900 °C) latent heat storage (LHS) can provide significant energy storage density and can convert thermal energy to both heat and electric power efficiently. In this context, a 2D heat transfer analysis is performed to capture the thermo-fluidic behavior during melting and solidification of ultra-high-temperature silicon in rectangular domains for different aspect ratios (AR) and heat flux. Fixed domain effective heat capacity formulation has been deployed to numerically model the phase change process using the finite element method (FEM)-based COMSOL Multiphysics. The influence of orientation of geometry and heat flux magnitude on charging and discharge performance has been evaluated. The charging efficiency of the silicon domain is found to decrease with the increase in heat flux. The charging performance of the silicon domain is compared with high-temperature LHS domain containing state of the art salt-based PCM (NaNO 3 ) for aspect ratio (AR) = 1. The charging rate of the NaNO 3 domain is observed to be significantly higher compared to the silicon domain of AR = 1, despite having lower thermal diffusivity. However, energy storage density (J/kg) and energy storage rate (J/kgs) for the silicon domain are 1.83 and 2 times more than they are for the NaNO 3 domain, respectively, after 3.5 h. An unconventional counterclockwise circular flow is observed in molten silicon, whereas a clockwise circular flow is observed in molten NaNO 3 during charging. The present study establishes silicon as a potential PCM for designing an ultra-high-temperature LHS system.

Suggested Citation

  • Alok Kumar Ray & Dibakar Rakshit & K. Ravi Kumar & Hal Gurgenci, 2021. "A Comparative Study of High-Temperature Latent Heat Storage Systems," Energies, MDPI, vol. 14(21), pages 1-19, October.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:6886-:d:661045
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/21/6886/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/21/6886/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zeneli, M. & Malgarinos, I. & Nikolopoulos, A. & Nikolopoulos, N. & Grammelis, P. & Karellas, S. & Kakaras, E., 2019. "Numerical simulation of a silicon-based latent heat thermal energy storage system operating at ultra-high temperatures," Applied Energy, Elsevier, vol. 242(C), pages 837-853.
    2. Ioan Sarbu & Calin Sebarchievici, 2018. "A Comprehensive Review of Thermal Energy Storage," Sustainability, MDPI, vol. 10(1), pages 1-32, January.
    3. Lin, Yaxue & Jia, Yuting & Alva, Guruprasad & Fang, Guiyin, 2018. "Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2730-2742.
    4. Jegadheeswaran, S. & Pohekar, Sanjay D., 2009. "Performance enhancement in latent heat thermal storage system: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2225-2244, December.
    5. Huang, Xiang & Alva, Guruprasad & Jia, Yuting & Fang, Guiyin, 2017. "Morphological characterization and applications of phase change materials in thermal energy storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 128-145.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dubey, Abhayjeet kumar & Sun, Jingyi & Choudhary, Tushar & Dash, Madhusmita & Rakshit, Dibakar & Ansari, M Zahid & Ramakrishna, Seeram & Liu, Yong & Nanda, Himansu Sekhar, 2023. "Emerging phase change materials with improved thermal efficiency for a clean and sustainable environment: An approach towards net zero," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    2. Fei, Wenbin & Bandeira Neto, Luis A. & Dai, Sheng & Cortes, Douglas D. & Narsilio, Guillermo A., 2023. "Numerical analyses of energy screw pile filled with phase change materials," Renewable Energy, Elsevier, vol. 202(C), pages 865-879.
    3. Beyne, W. & T'Jollyn, I. & Lecompte, S. & Cabeza, L.F. & De Paepe, M., 2023. "Standardised methods for the determination of key performance indicators for thermal energy storage heat exchangers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    4. Franco Dominici & Adio Miliozzi & Luigi Torre, 2021. "Thermal Properties of Shape-Stabilized Phase Change Materials Based on Porous Supports for Thermal Energy Storage," Energies, MDPI, vol. 14(21), pages 1-16, November.
    5. Wang, Jin & Li, Yanxin & Zheng, Dan & Mikulčić, Hrvoje & Vujanović, Milan & Sundén, Bengt, 2021. "Preparation and thermophysical property analysis of nanocomposite phase change materials for energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    6. Jiang, Zhu & Palacios, Anabel & Zou, Boyang & Zhao, Yanqi & Deng, Weiyu & Zhang, Xiaosong & Ding, Yulong, 2022. "A review on the fabrication methods for structurally stabilised composite phase change materials and their impacts on the properties of materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    7. Muhammad Saqib & Rafal Andrzejczyk, 2023. "A review of phase change materials and heat enhancement methodologies," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 12(3), May.
    8. Zhang, Shudong & Wang, Zhenyang, 2018. "Thermodynamics behavior of phase change latent heat materials in micro-/nanoconfined spaces for thermal storage and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2319-2331.
    9. Martin Beer & Dušan Kudelas & Radim Rybár, 2022. "A Numerical Analysis of the Thermal Energy Storage Based on Porous Gyroid Structure Filled with Sodium Acetate Trihydrate," Energies, MDPI, vol. 16(1), pages 1-17, December.
    10. Faraj, Khaireldin & Khaled, Mahmoud & Faraj, Jalal & Hachem, Farouk & Castelain, Cathy, 2020. "Phase change material thermal energy storage systems for cooling applications in buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    11. Sharif, M.K. Anuar & Al-Abidi, A.A. & Mat, S. & Sopian, K. & Ruslan, M.H. & Sulaiman, M.Y. & Rosli, M.A.M., 2015. "Review of the application of phase change material for heating and domestic hot water systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 557-568.
    12. Du, Kun & Calautit, John & Eames, Philip & Wu, Yupeng, 2021. "A state-of-the-art review of the application of phase change materials (PCM) in Mobilized-Thermal Energy Storage (M-TES) for recovering low-temperature industrial waste heat (IWH) for distributed heat," Renewable Energy, Elsevier, vol. 168(C), pages 1040-1057.
    13. Sihvonen, Ville & Ollila, Iisa & Jaanto, Jasmin & Grönman, Aki & Honkapuro, Samuli & Riikonen, Juhani & Price, Alisdair, 2024. "Role of power-to-heat and thermal energy storage in decarbonization of district heating," Energy, Elsevier, vol. 305(C).
    14. Li, W.Q. & Qu, Z.G. & Zhang, B.L. & Zhao, K. & Tao, W.Q., 2013. "Thermal behavior of porous stainless-steel fiber felt saturated with phase change material," Energy, Elsevier, vol. 55(C), pages 846-852.
    15. Tulio R. N. Porto & João A. Lima & Tony H. F. Andrade & João M. P. Q. Delgado & António G. B. Lima, 2023. "3D Numerical Analysis of a Phase Change Material Solidification Process Applied to a Latent Thermal Energy Storage System," Energies, MDPI, vol. 16(7), pages 1-28, March.
    16. Zhang, Yi & Tao, Wen & Wang, Kehan & Li, Dongxu, 2020. "Analysis of thermal properties of gypsum materials incorporated with microencapsulated phase change materials based on silica," Renewable Energy, Elsevier, vol. 149(C), pages 400-408.
    17. Tao, Y.B. & He, Ya-Ling, 2018. "A review of phase change material and performance enhancement method for latent heat storage system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 245-259.
    18. Liang, Yuntao & Wang, Ting & He, Zhenglong & Sun, Yong & Song, Shuanglin & Cui, Xinfeng & Cao, Yingjiazi, 2023. "High thermal storage capacity phase change microcapsules for heat transfer enhancement through hydroxylated-silanized nano-silicon carbide," Energy, Elsevier, vol. 285(C).
    19. Alva, Guruprasad & Lin, Yaxue & Fang, Guiyin, 2018. "An overview of thermal energy storage systems," Energy, Elsevier, vol. 144(C), pages 341-378.
    20. Laura Canale & Anna Rita Di Fazio & Mario Russo & Andrea Frattolillo & Marco Dell’Isola, 2021. "An Overview on Functional Integration of Hybrid Renewable Energy Systems in Multi-Energy Buildings," Energies, MDPI, vol. 14(4), pages 1-33, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:6886-:d:661045. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.