IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i20p6747-d658118.html
   My bibliography  Save this article

Unconventional Well Test Analysis for Assessing Individual Fracture Stages through Post-Treatment Pressure Falloffs: Case Study

Author

Listed:
  • Abdulaziz Ellafi

    (Department of Petroleum Engineering, University of North Dakota, Grand Forks, ND 58202, USA)

  • Hadi Jabbari

    (Department of Petroleum Engineering, University of North Dakota, Grand Forks, ND 58202, USA)

Abstract

Researchers and operators have recently become interested in the individual stage optimization of unconventional reservoir hydraulic fracture. These professionals aim to maximize well performance during an unconventional well’s early-stage and potential Enhanced Oil Recovery (EOR) lifespan. Although there have been advances in hydraulic fracturing technology that allow for the creation of large stimulated reservoir volumes (SRVs), it may not be optimal to use the same treatment design for all stages of a well or many wells in an area. We present a comprehensive review of the main approaches used to discuss applicability, pros and cons, and a detailed comparison between different methodologies. Our research outlines a combination of the Diagnostic Fracture Injection Test (DFIT) and falloff pressure analysis, which can help to design intelligent production and improve well performance. Our field study presents an unconventional well to explain the objective optimization workflow. The analysis indicates that most of the fracturing fluid was leaked off through natural fracture surface area and resulted in the estimation of larger values compared to the hydraulic fracture calculated area. These phenomena might represent a secondary fracture set with a high fracture closure stress activated in neighbor stages that was not well-developed in other sections. The falloff pressure analysis provides significant and vital information, assisting operators in fully understanding models for fracture network characterization.

Suggested Citation

  • Abdulaziz Ellafi & Hadi Jabbari, 2021. "Unconventional Well Test Analysis for Assessing Individual Fracture Stages through Post-Treatment Pressure Falloffs: Case Study," Energies, MDPI, vol. 14(20), pages 1-25, October.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:20:p:6747-:d:658118
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/20/6747/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/20/6747/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hadi Parvizi & Sina Rezaei Gomari & Farhad Nabhani & Abolfazl Dehghan Monfared, 2018. "Modeling the Risk of Commercial Failure for Hydraulic Fracturing Projects Due to Reservoir Heterogeneity," Energies, MDPI, vol. 11(1), pages 1-14, January.
    2. Qiuping Qin & Qingfeng Xue & Zizhuo Ma & Yikang Zheng & Hongyu Zhai, 2021. "Hydraulic Fracturing Simulations with Real-Time Evolution of Physical Parameters," Energies, MDPI, vol. 14(6), pages 1-12, March.
    3. Jianming He & Chong Lin & Xiao Li & Xiaole Wan, 2016. "Experimental Investigation of Crack Extension Patterns in Hydraulic Fracturing with Shale, Sandstone and Granite Cores," Energies, MDPI, vol. 9(12), pages 1-16, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ninghui Dou & Zhiyuan Wang & Guangyao Leng & Haoya Liu & Zhiqiang Hu & Ke Jiang, 2023. "Development and Performance Evaluation of Novel Solid-Free Epoxy Resin System for Remediation of Sustained Casing Pressure," Energies, MDPI, vol. 16(6), pages 1-15, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Przemyslaw Michal Wilczynski & Andrzej Domonik & Pawel Lukaszewski, 2021. "Anisotropy of Strength and Elastic Properties of Lower Paleozoic Shales from the Baltic Basin, Poland," Energies, MDPI, vol. 14(11), pages 1-17, May.
    2. Yang, Fujian & Wang, Guiling & Hu, Dawei & Liu, Yanguang & Zhou, Hui & Tan, Xianfeng, 2021. "Calibrations of thermo-hydro-mechanical coupling parameters for heating and water-cooling treated granite," Renewable Energy, Elsevier, vol. 168(C), pages 544-558.
    3. Haijun Zhao & Dwayne D. Tannant & Fengshan Ma & Jie Guo & Xuelei Feng, 2019. "Investigation of Hydraulic Fracturing Behavior in Heterogeneous Laminated Rock Using a Micromechanics-Based Numerical Approach," Energies, MDPI, vol. 12(18), pages 1-21, September.
    4. Yin, Weitao & Zhao, Yangsheng & Feng, Zijun, 2019. "Experimental research on the rupture characteristics of fractures subsequently filled by magma and hydrothermal fluid in hot dry rock," Renewable Energy, Elsevier, vol. 139(C), pages 71-79.
    5. Haiyang Wang & Binwei Xia & Yiyu Lu & Tao Gong & Rui Zhang, 2017. "Study on the Propagation Laws of Hydrofractures Meeting a Faulted Structure in the Coal Seam," Energies, MDPI, vol. 10(5), pages 1-17, May.
    6. Zhenhua Han & Jian Zhou & Luqing Zhang, 2018. "Influence of Grain Size Heterogeneity and In-Situ Stress on the Hydraulic Fracturing Process by PFC 2D Modeling," Energies, MDPI, vol. 11(6), pages 1-14, June.
    7. Muhammad Shahzad Kamal & Marwan Mohammed & Mohamed Mahmoud & Salaheldin Elkatatny, 2018. "Development of Chelating Agent-Based Polymeric Gel System for Hydraulic Fracturing," Energies, MDPI, vol. 11(7), pages 1-15, June.
    8. Zhang, Yanjun & Ma, Yueqiang & Hu, Zhongjun & Lei, Honglei & Bai, Lin & Lei, Zhihong & Zhang, Qian, 2019. "An experimental investigation into the characteristics of hydraulic fracturing and fracture permeability after hydraulic fracturing in granite," Renewable Energy, Elsevier, vol. 140(C), pages 615-624.
    9. Seyedalireza Khatibi & Mehdi Ostadhassan & David Tuschel & Thomas Gentzis & Humberto Carvajal-Ortiz, 2018. "Evaluating Molecular Evolution of Kerogen by Raman Spectroscopy: Correlation with Optical Microscopy and Rock-Eval Pyrolysis," Energies, MDPI, vol. 11(6), pages 1-19, May.
    10. Ion Pană & Iuliana Veronica Gheţiu & Ioana Gabriela Stan & Florinel Dinu & Gheorghe Brănoiu & Silvian Suditu, 2022. "The Use of Hydraulic Fracturing in Stimulation of the Oil and Gas Wells in Romania," Sustainability, MDPI, vol. 14(9), pages 1-33, May.
    11. Jianming He & Lekan Olatayo Afolagboye & Chong Lin & Xiaole Wan, 2018. "An Experimental Investigation of Hydraulic Fracturing in Shale Considering Anisotropy and Using Freshwater and Supercritical CO 2," Energies, MDPI, vol. 11(3), pages 1-13, March.
    12. Peibo Li & Jianguo Wang & Wei Liang & Rui Sun, 2023. "An Analytical and Numerical Analysis for Hydraulic Fracture Propagation through Reservoir Interface in Coal-Measure Superimposed Reservoirs," Sustainability, MDPI, vol. 15(5), pages 1-34, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:20:p:6747-:d:658118. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.