IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i20p6559-d654634.html
   My bibliography  Save this article

The Methodology for Assessing the Impact of Offshore Wind Farms on Navigation, Based on the Automatic Identification System Historical Data

Author

Listed:
  • Krzysztof Naus

    (Department of Navigation and Naval Weapons, Gdynia, Polish Naval Academy, Smidowicza 69, 81-127 Gdynia, Poland)

  • Katarzyna Banaszak

    (Department of Navigation and Naval Weapons, Gdynia, Polish Naval Academy, Smidowicza 69, 81-127 Gdynia, Poland)

  • Piotr Szymak

    (Institute of Electrical Engineering and Automatics, Gdynia, Polish Naval Academy, Smidowicza 69, 81-127 Gdynia, Poland)

Abstract

Mounting offshore renewable energy installations often involves extra risk regarding the safety of navigation, especially for areas with high traffic intensity. The decision-makers planning such projects need to anticipate and plan appropriate solutions in order to manage navigation risks. This process is referred to as “environmental impact assessment”. In what way can these threats be reduced using the available Automatic Identification System (AIS) tool? This paper presents a study of the concept for the methodology of an a posteriori vessel traffic description in the form of quantitative and qualitative characteristics created based on a large set of historical AIS data (big data). The research was oriented primarily towards the practical application and verification of the methodology used when assessing the impact of the planned Offshore Wind Farm (OWF) Baltic II on the safety of ships in Polish Marine Areas, and on the effectiveness of navigation, taking into account the existing shipping routes and customary and traffic separation systems. The research results (e.g., a significant distance of the Baltic II from the nearest customary shipping route equal to 3 Nm, a small number of vessels in its area in 2017 amounting to only 930) obtained on the basis of the annual AIS data set allowed for an unambiguous and reliable assessment of the impact of OWFs on shipping, thus confirming the suitability of the methodology for MREI spatial planning.

Suggested Citation

  • Krzysztof Naus & Katarzyna Banaszak & Piotr Szymak, 2021. "The Methodology for Assessing the Impact of Offshore Wind Farms on Navigation, Based on the Automatic Identification System Historical Data," Energies, MDPI, vol. 14(20), pages 1-23, October.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:20:p:6559-:d:654634
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/20/6559/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/20/6559/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Toke, David, 2011. "The UK offshore wind power programme: A sea-change in UK energy policy?," Energy Policy, Elsevier, vol. 39(2), pages 526-534, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Weigell, Jürgen & Jahn, Carlos, 2022. "Assessing offshore wind farm collision risks using AIS data: An overview," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Kersten, Wolfgang & Jahn, Carlos & Blecker, Thorsten & Ringle, Christian M. (ed.), Changing Tides: The New Role of Resilience and Sustainability in Logistics and Supply Chain Management – Innovative Approaches for the Shift to a New , volume 33, pages 499-521, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gurkan, G. & Langestraat, R., 2013. "Modeling And Analysis Of Renewable Energy Obligations And Technology Bandings In the UK Electricity Market," Discussion Paper 2013-016, Tilburg University, Center for Economic Research.
    2. Shahriyar Nasirov & Carlos Silva & Claudio A. Agostini, 2015. "Investors’ Perspectives on Barriers to the Deployment of Renewable Energy Sources in Chile," Energies, MDPI, vol. 8(5), pages 1-21, April.
    3. Jacobsson, Staffan & Karltorp, Kersti, 2013. "Mechanisms blocking the dynamics of the European offshore wind energy innovation system – Challenges for policy intervention," Energy Policy, Elsevier, vol. 63(C), pages 1182-1195.
    4. Langestraat, R., 2013. "Environmental policies in competitive electricity markets," Other publications TiSEM 8c1d6907-e2ab-40ea-abcc-7, Tilburg University, School of Economics and Management.
    5. Kamila Pronińska & Krzysztof Księżopolski, 2021. "Baltic Offshore Wind Energy Development—Poland’s Public Policy Tools Analysis and the Geostrategic Implications," Energies, MDPI, vol. 14(16), pages 1-17, August.
    6. Zhang, Pan, 2019. "Do energy intensity targets matter for wind energy development? Identifying their heterogeneous effects in Chinese provinces with different wind resources," Renewable Energy, Elsevier, vol. 139(C), pages 968-975.
    7. Kern, Florian & Smith, Adrian & Shaw, Chris & Raven, Rob & Verhees, Bram, 2014. "From laggard to leader: Explaining offshore wind developments in the UK," Energy Policy, Elsevier, vol. 69(C), pages 635-646.
    8. Hernandez-Negron, Christian G. & Baker, Erin & Goldstein, Anna P., 2023. "A hypothesis for experience curves of related technologies with an application to wind energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    9. Santiago Salvador & Xurxo Costoya & Francisco Javier Sanz-Larruga & Luis Gimeno, 2018. "Development of Offshore Wind Power: Contrasting Optimal Wind Sites with Legal Restrictions in Galicia, Spain," Energies, MDPI, vol. 11(4), pages 1-25, March.
    10. Mani, Swaminathan & Dhingra, Tarun, 2013. "Policies to accelerate the growth of offshore wind energy sector in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 473-482.
    11. Iskin, Ibrahim & Daim, Tugrul & Kayakutlu, Gulgun & Altuntas, Mehmet, 2012. "Exploring renewable energy pricing with analytic network process — Comparing a developed and a developing economy," Energy Economics, Elsevier, vol. 34(4), pages 882-891.
    12. Bórawski, Piotr & Bełdycka-Bórawska, Aneta & Jankowski, Krzysztof Jóżef & Dubis, Bogdan & Dunn, James W., 2020. "Development of wind energy market in the European Union," Renewable Energy, Elsevier, vol. 161(C), pages 691-700.
    13. Danny MacKinnon & Stuart Dawley & Markus Steen & Max-Peter Menzel & Asbjørn Karlsen & Pascal Sommer & Gard Hopsdal Hansen & Håkon Endresen Normann, 2018. "Path creation, global production networks and regional development: a comparative international analysis of the offshore wind sector," Papers in Evolutionary Economic Geography (PEEG) 1810, Utrecht University, Department of Human Geography and Spatial Planning, Group Economic Geography, revised Feb 2018.
    14. Mani, Swaminathan & Dhingra, Tarun, 2013. "Offshore wind energy policy for India—Key factors to be considered," Energy Policy, Elsevier, vol. 56(C), pages 672-683.
    15. Jay, Stephen, 2011. "Mobilising for marine wind energy in the United Kingdom," Energy Policy, Elsevier, vol. 39(7), pages 4125-4133, July.
    16. Iglesias, Guillermo & del Río, Pablo & Dopico, Jesús Ángel, 2011. "Policy analysis of authorisation procedures for wind energy deployment in Spain," Energy Policy, Elsevier, vol. 39(7), pages 4067-4076, July.
    17. Kern, Florian & Verhees, Bram & Raven, Rob & Smith, Adrian, 2015. "Empowering sustainable niches: Comparing UK and Dutch offshore wind developments," Technological Forecasting and Social Change, Elsevier, vol. 100(C), pages 344-355.
    18. Giuseppe Bellantuono, 2014. "The regulatory anticommons of green infrastructures," European Journal of Law and Economics, Springer, vol. 37(2), pages 325-354, April.
    19. Mani, Swaminathan & Dhingra, Tarun, 2013. "Critique of offshore wind energy policies of the UK and Germany—What are the lessons for India," Energy Policy, Elsevier, vol. 63(C), pages 900-909.
    20. Gürkan, Gül & Langestraat, Romeo, 2014. "Modeling and analysis of renewable energy obligations and technology bandings in the UK electricity market," Energy Policy, Elsevier, vol. 70(C), pages 85-95.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:20:p:6559-:d:654634. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.