IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i20p6516-d653690.html
   My bibliography  Save this article

Experimental Fitting of Redesign Electrified Turbocompressor of a Novel Mild Hybrid Power Train for a City Car

Author

Listed:
  • Roberto Capata

    (Department of Mechanical and Aerospace Engineering, University of Roma “Sapienza”, 00184 Roma, Italy)

Abstract

As part of a project for the realization of a hybrid vehicle with an innovative power train system, the proposal presented is to disconnect the turbocharger group and study the different behavior of the compressor and turbine, so decoupled. In an actual turbocharger, when the power of the turbine exceeds that required by the compressor, the wastegate valve opens. In this way, a part of the flue gases does not evolve into a turbine and limits the power generated. In the solution proposed here (the paper considers only “compressor side”) all the flow rate of the flue gases is processed by the turbine. In this way, for each rpms of the IC engine, the turbine generates more power than that required by the compressor. This makes it possible to use this surplus of power for the auxiliaries and/or to recharge the battery pack of the considered hybrid vehicle. An additional advantage is, thanks to this surplus generated, that the battery pack can be smaller and can be recharged while driving. Therefore, the entire system operates as a “Range Extended”. As mentioned above, this work is focused on the direct compressor—innovative electric motor coupling will be sized and realized, and a subsequent series of experimental tests will confirm the feasibility of this phase of the project.

Suggested Citation

  • Roberto Capata, 2021. "Experimental Fitting of Redesign Electrified Turbocompressor of a Novel Mild Hybrid Power Train for a City Car," Energies, MDPI, vol. 14(20), pages 1-20, October.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:20:p:6516-:d:653690
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/20/6516/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/20/6516/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chao Wu & Kang Song & Shaohua Li & Hui Xie, 2019. "Impact of Electrically Assisted Turbocharger on the Intake Oxygen Concentration and Its Disturbance Rejection Control for a Heavy-duty Diesel Engine," Energies, MDPI, vol. 12(15), pages 1-22, August.
    2. Roberto Capata, 2018. "Urban and Extra-Urban Hybrid Vehicles: A Technological Review," Energies, MDPI, vol. 11(11), pages 1-38, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Simone Lombardi & Federico Ricci & Roberto Martinelli & Laura Tribioli & Carlo Nazareno Grimaldi & Gino Bella, 2023. "Energy Analysis of a Novel Turbo-Compound System for Mild Hybridization of a Gasoline Engine," Energies, MDPI, vol. 16(18), pages 1-18, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gengjin Shi & Zhenlong Wu & Jian Guo & Donghai Li & Yanjun Ding, 2020. "Superheated Steam Temperature Control Based on a Hybrid Active Disturbance Rejection Control," Energies, MDPI, vol. 13(7), pages 1-26, April.
    2. Massimiliano Passalacqua & Mauro Carpita & Serge Gavin & Mario Marchesoni & Matteo Repetto & Luis Vaccaro & Sébastien Wasterlain, 2019. "Supercapacitor Storage Sizing Analysis for a Series Hybrid Vehicle," Energies, MDPI, vol. 12(9), pages 1-15, May.
    3. Jakub Lasocki & Artur Kopczyński & Paweł Krawczyk & Paweł Roszczyk, 2019. "Empirical Study on the Efficiency of an LPG-Supplied Range Extender for Electric Vehicles," Energies, MDPI, vol. 12(18), pages 1-23, September.
    4. Leone Martellucci & Roberto Capata, 2022. "High Performance Hybrid Vehicle Concept—Preliminary Study and Vehicle Packaging," Energies, MDPI, vol. 15(11), pages 1-20, May.
    5. Andrés Montero Romero & Andrea Di Martino & Michela Longo & Linda Barelli & Dario Zaninelli, 2022. "Full Implementation of Electric Mobility in a Countryside Region of Spain," Energies, MDPI, vol. 15(17), pages 1-19, August.
    6. Aleš Hace, 2019. "The Advanced Control Approach based on SMC Design for the High-Fidelity Haptic Power Lever of a Small Hybrid Electric Aircraft," Energies, MDPI, vol. 12(15), pages 1-31, August.
    7. Roberto Capata & Francesco Tatti, 2020. "Designing, Prototyping, Assembling and Costs Analysis of a Gas Turbine Hybrid Vehicle," Energies, MDPI, vol. 13(18), pages 1-36, September.
    8. Keun-Young Yoon & Soo-Whang Baek, 2019. "Robust Design Optimization with Penalty Function for Electric Oil Pumps with BLDC Motors," Energies, MDPI, vol. 12(1), pages 1-14, January.
    9. Chien-Hsun Wu & Yong-Xiang Xu, 2019. "The Optimal Control of Fuel Consumption for a Heavy-Duty Motorcycle with Three Power Sources Using Hardware-in-the-Loop Simulation," Energies, MDPI, vol. 13(1), pages 1-16, December.
    10. Roberto Capata & Alfonso Calabria, 2022. "High-Performance Electric/Hybrid Vehicle—Environmental, Economic and Technical Assessments of Electrical Accumulators for Sustainable Mobility," Energies, MDPI, vol. 15(6), pages 1-15, March.
    11. Dariusz Kozak & Paweł Mazuro & Andrzej Teodorczyk, 2021. "Numerical Simulation of Two-Stage Variable Geometry Turbine," Energies, MDPI, vol. 14(17), pages 1-34, August.
    12. Santiago Martinez-Boggio & Javier Monsalve-Serrano & Antonio García & Pedro Curto-Risso, 2023. "High Degree of Electrification in Heavy-Duty Vehicles," Energies, MDPI, vol. 16(8), pages 1-20, April.
    13. Moayad Shammut & Mengqiu Cao & Yuerong Zhang & Claire Papaix & Yuqi Liu & Xing Gao, 2019. "Banning Diesel Vehicles in London: Is 2040 Too Late?," Energies, MDPI, vol. 12(18), pages 1-17, September.
    14. Fabio Orecchini & Adriano Santiangeli & Fabrizio Zuccari, 2020. "Real Drive Well-to-Wheel Energy Analysis of Conventional and Electrified Car Powertrains," Energies, MDPI, vol. 13(18), pages 1-21, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:20:p:6516-:d:653690. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.