IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i20p6510-d653571.html
   My bibliography  Save this article

Ab-Initio Molecular Dynamics Simulation of Condensed-Phase Reactivity: The Electrolysis of Ammonia and Ethanimine in Aquatic Carbon Dioxide Solutions

Author

Listed:
  • Igor Gordiy

    (Theoretische Chemie, Universität Hannover, Callinstr. 3A, 30167 Hannover, Germany)

  • Lukas Steinbach

    (Theoretische Chemie, Universität Hannover, Callinstr. 3A, 30167 Hannover, Germany)

  • Irmgard Frank

    (Theoretische Chemie, Universität Hannover, Callinstr. 3A, 30167 Hannover, Germany)

Abstract

The re-use of wastewater is an increasingly important subject. Most recently, several attempts were reported to convert wastewater in harmless or even valuable substances by the use of electrical current. Electrochemistry is an old approach. The renewed interest stems from the fact that electrical current is often available in abundance, for example from solar energy in arid regions, while clean water is not. Experimentally, one has to deal with very many products which are the result of many reaction steps. Here, theory can help. Using Car–Parrinello molecular dynamics, we simulate the first few reaction steps of the electrolysis of wastewater. On the basis of previous studies, we investigate the reaction of carbon dioxide and nitrogen compounds. The results show a great variety of reaction steps and resulting products. Some of them are technologically interesting, such as hydrogen and formic acid.

Suggested Citation

  • Igor Gordiy & Lukas Steinbach & Irmgard Frank, 2021. "Ab-Initio Molecular Dynamics Simulation of Condensed-Phase Reactivity: The Electrolysis of Ammonia and Ethanimine in Aquatic Carbon Dioxide Solutions," Energies, MDPI, vol. 14(20), pages 1-21, October.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:20:p:6510-:d:653571
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/20/6510/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/20/6510/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. O'Shea, R. & Wall, D.M. & McDonagh, S. & Murphy, J.D., 2017. "The potential of power to gas to provide green gas utilising existing CO2 sources from industries, distilleries and wastewater treatment facilities," Renewable Energy, Elsevier, vol. 114(PB), pages 1090-1100.
    2. Thema, M. & Bauer, F. & Sterner, M., 2019. "Power-to-Gas: Electrolysis and methanation status review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 775-787.
    3. Kotowicz, Janusz & Węcel, Daniel & Brzęczek, Mateusz, 2021. "Analysis of the work of a “renewable” methanol production installation based ON H2 from electrolysis and CO2 from power plants," Energy, Elsevier, vol. 221(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrea Barbaresi & Mirko Morini & Agostino Gambarotta, 2022. "Review on the Status of the Research on Power-to-Gas Experimental Activities," Energies, MDPI, vol. 15(16), pages 1-32, August.
    2. Georgios Varvoutis & Athanasios Lampropoulos & Evridiki Mandela & Michalis Konsolakis & George E. Marnellos, 2022. "Recent Advances on CO 2 Mitigation Technologies: On the Role of Hydrogenation Route via Green H 2," Energies, MDPI, vol. 15(13), pages 1-38, June.
    3. David Borge-Diez & Enrique Rosales-Asensio & Emin Açıkkalp & Daniel Alonso-Martínez, 2023. "Analysis of Power to Gas Technologies for Energy Intensive Industries in European Union," Energies, MDPI, vol. 16(1), pages 1-22, January.
    4. Navarro, J.C. & Baena-Moreno, F.M. & Centeno, M.A. & Laguna, O.H. & Almagro, J.F. & Odriozola, J.A., 2023. "Process design and utilisation strategy for CO2 capture in flue gases. Technical assessment and preliminary economic approach for steel mills," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    5. Lena Maria Ringsgwandl & Johannes Schaffert & Nils Brücken & Rolf Albus & Klaus Görner, 2022. "Current Legislative Framework for Green Hydrogen Production by Electrolysis Plants in Germany," Energies, MDPI, vol. 15(5), pages 1-16, February.
    6. Gutiérrez-Martín, F. & Rodríguez-Antón, L.M. & Legrand, M., 2020. "Renewable power-to-gas by direct catalytic methanation of biogas," Renewable Energy, Elsevier, vol. 162(C), pages 948-959.
    7. Chauvy, Remi & Dubois, Lionel & Lybaert, Paul & Thomas, Diane & De Weireld, Guy, 2020. "Production of synthetic natural gas from industrial carbon dioxide," Applied Energy, Elsevier, vol. 260(C).
    8. Bidart, Christian & Wichert, Martin & Kolb, Gunther & Held, Michael, 2022. "Biogas catalytic methanation for biomethane production as fuel in freight transport - A carbon footprint assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    9. Corey Duncan & Robin Roche & Samir Jemei & Marie-Cécile Péra, 2022. "Techno-economical modelling of a power-to-gas system for plant configuration evaluation in a local context," Post-Print hal-03692975, HAL.
    10. Voelklein, M.A. & Rusmanis, Davis & Murphy, J.D., 2019. "Biological methanation: Strategies for in-situ and ex-situ upgrading in anaerobic digestion," Applied Energy, Elsevier, vol. 235(C), pages 1061-1071.
    11. Upadhyay, Mukesh & Kim, Ayeon & Paramanantham, SalaiSargunan S. & Kim, Heehyang & Lim, Dongjun & Lee, Sunyoung & Moon, Sangbong & Lim, Hankwon, 2022. "Three-dimensional CFD simulation of proton exchange membrane water electrolyser: Performance assessment under different condition," Applied Energy, Elsevier, vol. 306(PA).
    12. Inkeri, Eero & Tynjälä, Tero & Karjunen, Hannu, 2021. "Significance of methanation reactor dynamics on the annual efficiency of power-to-gas -system," Renewable Energy, Elsevier, vol. 163(C), pages 1113-1126.
    13. Hermesmann, M. & Grübel, K. & Scherotzki, L. & Müller, T.E., 2021. "Promising pathways: The geographic and energetic potential of power-to-x technologies based on regeneratively obtained hydrogen," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    14. Kim, Jeongdong & Qi, Meng & Park, Jinwoo & Moon, Il, 2023. "Revealing the impact of renewable uncertainty on grid-assisted power-to-X: A data-driven reliability-based design optimization approach," Applied Energy, Elsevier, vol. 339(C).
    15. Schlund, David & Theile, Philipp, 2022. "Simultaneity of green energy and hydrogen production: Analysing the dispatch of a grid-connected electrolyser," Energy Policy, Elsevier, vol. 166(C).
    16. Michael Sterner & Michael Specht, 2021. "Power-to-Gas and Power-to-X—The History and Results of Developing a New Storage Concept," Energies, MDPI, vol. 14(20), pages 1-18, October.
    17. Díaz, Israel & Fdz-Polanco, Fernando & Mutsvene, Boldwin & Fdz-Polanco, María, 2020. "Effect of operating pressure on direct biomethane production from carbon dioxide and exogenous hydrogen in the anaerobic digestion of sewage sludge," Applied Energy, Elsevier, vol. 280(C).
    18. Sánchez, Antonio & Martín, Mariano & Zhang, Qi, 2021. "Optimal design of sustainable power-to-fuels supply chains for seasonal energy storage," Energy, Elsevier, vol. 234(C).
    19. Drechsler, Carsten & Agar, David W., 2020. "Intensified integrated direct air capture - power-to-gas process based on H2O and CO2 from ambient air," Applied Energy, Elsevier, vol. 273(C).
    20. Speckmann, Friedrich-W. & Keiner, Dominik & Birke, Kai Peter, 2020. "Influence of rectifiers on the techno-economic performance of alkaline electrolysis in a smart grid environment," Renewable Energy, Elsevier, vol. 159(C), pages 107-116.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:20:p:6510-:d:653571. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.