IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i20p6474-d652941.html
   My bibliography  Save this article

In Situ Deformation Analysis of a Fracture in Coal under Cyclic Loading and Unloading

Author

Listed:
  • Zhihui Liu

    (State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing at Karamay, Karamay 834000, China)

  • Yongfei Yang

    (Research Centre of Multiphase Flow in Porous Media, School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China)

  • Yingwen Li

    (Research Centre of Multiphase Flow in Porous Media, School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China)

  • Jiaxue Li

    (State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing at Karamay, Karamay 834000, China)

Abstract

The deformation analysis of fractures is vital for advantageous development of oil and gas fields, especially the coalbed methane (CBM) reservoir, since the change of fracture parameters can be directly evaluated through fracture deformation analysis. Then the flow capacity of CBM and the effect of various stimulation methods can be analyzed. In this study, X-ray CT image analysis is used to quantitatively characterize the deformation of a coal fracture in situ, and the evolution of fracture aperture under cyclic loading is presented. Furthermore, dimensionless permeability at different confining pressures by the Lattice Boltzmann method is simulated. The current results indicate that the fracture deformation changes significantly under cyclic loading. A dramatic change is observed in the initial loading stage, in which the coal is strongly compacted, and the fracture aperture and permeability are reduced to 13.9% and 0.1%, respectively, when the confining pressure is loaded to 10 MPa. When unloading to 0 MPa, the fracture aperture and dimensionless permeability are far less than that of the initial 0 MPa. It is worth noting that the deformation of the second cycle fracture is weaker, and the change range of permeability and aperture of coal fracture becomes smaller, but when unloading to 0 MPa in the second cycle, the fracture permeability can be restored to 50.8% compared with 0 MPa of the loading stage. Additionally, a special phenomenon has been observed that under cyclic loading, even when the confining pressure reaches 10 MPa, some areas of the fracture are still not closed. We infer that there are some large pore structures in fracture space, and high confining pressure leads to fracture closure, but the deformation of the pore structure is not prominent compared with the fracture space. These characteristics of fracture deformation are of great significance for the production of CBM and are worthy of further study.

Suggested Citation

  • Zhihui Liu & Yongfei Yang & Yingwen Li & Jiaxue Li, 2021. "In Situ Deformation Analysis of a Fracture in Coal under Cyclic Loading and Unloading," Energies, MDPI, vol. 14(20), pages 1-16, October.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:20:p:6474-:d:652941
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/20/6474/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/20/6474/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Katarzyna Godyń & Barbara Dutka & Monika Chuchro & Mariusz Młynarczuk, 2020. "Synergy of Parameters Determining the Optimal Properties of Coal as a Natural Sorbent," Energies, MDPI, vol. 13(8), pages 1-17, April.
    2. Yongfei Yang & Zhihui Liu & Jun Yao & Lei Zhang & Jingsheng Ma & S. Hossein Hejazi & Linda Luquot & Toussaint Dono Ngarta, 2018. "Flow Simulation of Artificially Induced Microfractures Using Digital Rock and Lattice Boltzmann Methods," Energies, MDPI, vol. 11(8), pages 1-17, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jianchao Cai & Reza Rezaee & Victor Calo, 2022. "Recent Advances in Multiscale Petrophysics Characterization and Multiphase Flow in Unconventional Reservoirs," Energies, MDPI, vol. 15(8), pages 1-2, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anmin Wang & Daiyong Cao & Yingchun Wei & Zhifei Liu, 2020. "Macromolecular Structure Controlling Micro Mechanical Properties of Vitrinite and Inertinite in Tectonically Deformed Coals—A Case Study in Fengfeng Coal Mine of Taihangshan Fault Zone (North China)," Energies, MDPI, vol. 13(24), pages 1-23, December.
    2. Katarzyna Godyń & Barbara Dutka, 2022. "Preliminary Studies of Slag and Ash from Incinerated Municipal Waste for Prospective Applications," Energies, MDPI, vol. 16(1), pages 1-26, December.
    3. Hai Sun & Lian Duan & Lei Liu & Weipeng Fan & Dongyan Fan & Jun Yao & Lei Zhang & Yongfei Yang & Jianlin Zhao, 2019. "The Influence of Micro-Fractures on the Flow in Tight Oil Reservoirs Based on Pore-Network Models," Energies, MDPI, vol. 12(21), pages 1-17, October.
    4. Jianchao Cai & Shuyu Sun & Ali Habibi & Zhien Zhang, 2019. "Emerging Advances in Petrophysics: Porous Media Characterization and Modeling of Multiphase Flow," Energies, MDPI, vol. 12(2), pages 1-5, January.
    5. Xinling Li & Zeyun Jiang & Chao Min, 2019. "Quantitative Study of the Geometrical and Hydraulic Characteristics of a Single Rock Fracture," Energies, MDPI, vol. 12(14), pages 1-17, July.
    6. Liming Zhang & Zekun Deng & Kai Zhang & Tao Long & Joshua Kwesi Desbordes & Hai Sun & Yongfei Yang, 2019. "Well-Placement Optimization in an Enhanced Geothermal System Based on the Fracture Continuum Method and 0-1 Programming," Energies, MDPI, vol. 12(4), pages 1-20, February.
    7. Yaohao Guo & Lei Zhang & Guangpu Zhu & Jun Yao & Hai Sun & Wenhui Song & Yongfei Yang & Jianlin Zhao, 2019. "A Pore-Scale Investigation of Residual Oil Distributions and Enhanced Oil Recovery Methods," Energies, MDPI, vol. 12(19), pages 1-16, September.
    8. Marta Skiba & Barbara Dutka & Mariusz Młynarczuk, 2021. "MLP-Based Model for Estimation of Methane Seam Pressure," Energies, MDPI, vol. 14(22), pages 1-12, November.
    9. Qiang Wang & Jifang Wan & Langfeng Mu & Ruichen Shen & Maria Jose Jurado & Yufeng Ye, 2020. "An Analytical Solution for Transient Productivity Prediction of Multi-Fractured Horizontal Wells in Tight Gas Reservoirs Considering Nonlinear Porous Flow Mechanisms," Energies, MDPI, vol. 13(5), pages 1-20, March.
    10. Haiyuan Yang & Li Zhang & Ronghe Liu & Xianli Wen & Yongfei Yang & Lei Zhang & Kai Zhang & Roohollah Askari, 2019. "Thermal Conduction Simulation Based on Reconstructed Digital Rocks with Respect to Fractures," Energies, MDPI, vol. 12(14), pages 1-13, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:20:p:6474-:d:652941. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.