IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i14p2796-d250161.html
   My bibliography  Save this article

Quantitative Study of the Geometrical and Hydraulic Characteristics of a Single Rock Fracture

Author

Listed:
  • Xinling Li

    (School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China)

  • Zeyun Jiang

    (Institute of Petroleum Engineering, Heriot-Watt University, Edinburgh EH14 4AS, UK
    School of Science, Institute for Artificial Intelligence, Southwest Petroleum University, Chengdu 611731, China)

  • Chao Min

    (School of Science, Institute for Artificial Intelligence, Southwest Petroleum University, Chengdu 611731, China)

Abstract

Three-dimensional images of fractured rocks can be acquired by an X-ray micro-CT scanning technique, which allows researchers to investigate the ‘true’ inner void structure of a natural fracture without destroying the core. The 3D fractures in images can be characterised by measuring morphological properties on both fracture apertures and its trend surface, like the medial surface, that reveals the undulation of fracture planes. In a previous paper, we have proposed a novel method to generate fracture models stochastically. Based on a large number of such fracture models, in this work a modified factor was proposed for improving the performance of the cubic law by incorporating the flow-dominant characteristics, including two parameters (aperture roughness and spatial correlation length) for fracture apertures and two (surface undulation coefficient and spatial correlation length) for fracture trend-surface. We assess and validate the modified cubic law by applying it to natural fractures in images that have varying apertures and extremely bended trend-surfaces, with the permeabilities calculated by a Lattice Boltzmann Method as ‘ground truths’.

Suggested Citation

  • Xinling Li & Zeyun Jiang & Chao Min, 2019. "Quantitative Study of the Geometrical and Hydraulic Characteristics of a Single Rock Fracture," Energies, MDPI, vol. 12(14), pages 1-17, July.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:14:p:2796-:d:250161
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/14/2796/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/14/2796/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yongfei Yang & Zhihui Liu & Jun Yao & Lei Zhang & Jingsheng Ma & S. Hossein Hejazi & Linda Luquot & Toussaint Dono Ngarta, 2018. "Flow Simulation of Artificially Induced Microfractures Using Digital Rock and Lattice Boltzmann Methods," Energies, MDPI, vol. 11(8), pages 1-17, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paulina Krakowska & Paweł Madejski, 2019. "Research on Fluid Flow and Permeability in Low Porous Rock Sample Using Laboratory and Computational Techniques," Energies, MDPI, vol. 12(24), pages 1-17, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhihui Liu & Yongfei Yang & Yingwen Li & Jiaxue Li, 2021. "In Situ Deformation Analysis of a Fracture in Coal under Cyclic Loading and Unloading," Energies, MDPI, vol. 14(20), pages 1-16, October.
    2. Hai Sun & Lian Duan & Lei Liu & Weipeng Fan & Dongyan Fan & Jun Yao & Lei Zhang & Yongfei Yang & Jianlin Zhao, 2019. "The Influence of Micro-Fractures on the Flow in Tight Oil Reservoirs Based on Pore-Network Models," Energies, MDPI, vol. 12(21), pages 1-17, October.
    3. Jianchao Cai & Shuyu Sun & Ali Habibi & Zhien Zhang, 2019. "Emerging Advances in Petrophysics: Porous Media Characterization and Modeling of Multiphase Flow," Energies, MDPI, vol. 12(2), pages 1-5, January.
    4. Liming Zhang & Zekun Deng & Kai Zhang & Tao Long & Joshua Kwesi Desbordes & Hai Sun & Yongfei Yang, 2019. "Well-Placement Optimization in an Enhanced Geothermal System Based on the Fracture Continuum Method and 0-1 Programming," Energies, MDPI, vol. 12(4), pages 1-20, February.
    5. Yaohao Guo & Lei Zhang & Guangpu Zhu & Jun Yao & Hai Sun & Wenhui Song & Yongfei Yang & Jianlin Zhao, 2019. "A Pore-Scale Investigation of Residual Oil Distributions and Enhanced Oil Recovery Methods," Energies, MDPI, vol. 12(19), pages 1-16, September.
    6. Qiang Wang & Jifang Wan & Langfeng Mu & Ruichen Shen & Maria Jose Jurado & Yufeng Ye, 2020. "An Analytical Solution for Transient Productivity Prediction of Multi-Fractured Horizontal Wells in Tight Gas Reservoirs Considering Nonlinear Porous Flow Mechanisms," Energies, MDPI, vol. 13(5), pages 1-20, March.
    7. Haiyuan Yang & Li Zhang & Ronghe Liu & Xianli Wen & Yongfei Yang & Lei Zhang & Kai Zhang & Roohollah Askari, 2019. "Thermal Conduction Simulation Based on Reconstructed Digital Rocks with Respect to Fractures," Energies, MDPI, vol. 12(14), pages 1-13, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:14:p:2796-:d:250161. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.