IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i19p6330-d649675.html
   My bibliography  Save this article

Integrated Sustainable Energy for Sub-Saharan Africa: A Case Study of Machinga Boma in Malawi

Author

Listed:
  • Juliana O. Eko

    (James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK)

  • Manosh C. Paul

    (James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK)

Abstract

Nearly 60% of the population of sub-Saharan Africa still live without access to electricity. Comparing the access rate of the countries in the region, Malawi ranks as one of the least electrified, with electricity available to only 14.6% of its population, as of 2018. This issue makes Malawi the case study of this research and poses the research question, “How can the low electricity access rate in Malawi be addressed?”. To address this research question, possible off grid, integrated, sustainable energy systems based on locally available energy resources—solar, wind, and diesel—are proposed. The multiyear and sensitivity analysis function of HOMER Pro microgrid simulation software is used to analyze the off grid performance of the proposed combinations of diesel generators, wind turbines, solar Photovoltaics, and battery storage, in providing power for an estimate of 400 households and nonresidential outlets in Machinga Boma, a community in the Southern region of Malawi. Based on the analysis, the Solar Photovoltaic/Diesel Genset/battery system combination consisting of 750 kWp solar Photovoltaic array, 460 kW (575 kVA) diesel generator and 3000 kWh nominal capacity battery bank is shown to be the most optimal system, with an overall energy cost of $0.339/kWh. Under the imposed design constraints and the sensitivity analysis performed to analyze the impact of changing the base fuel price, varying load growth, changing solar irradiation, and wind levels on the system performance, the most optimal system remained the preferred system choice.

Suggested Citation

  • Juliana O. Eko & Manosh C. Paul, 2021. "Integrated Sustainable Energy for Sub-Saharan Africa: A Case Study of Machinga Boma in Malawi," Energies, MDPI, vol. 14(19), pages 1-21, October.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6330-:d:649675
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/19/6330/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/19/6330/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Olatomiwa, Lanre & Mekhilef, Saad & Huda, A.S.N. & Ohunakin, Olayinka S., 2015. "Economic evaluation of hybrid energy systems for rural electrification in six geo-political zones of Nigeria," Renewable Energy, Elsevier, vol. 83(C), pages 435-446.
    2. Nacer, T. & Hamidat, A. & Nadjemi, O. & Bey, M., 2016. "Feasibility study of grid connected photovoltaic system in family farms for electricity generation in rural areas," Renewable Energy, Elsevier, vol. 96(PA), pages 305-318.
    3. Jamiu Omotayo Oladigbolu & Makbul A. M. Ramli & Yusuf A. Al-Turki, 2019. "Techno-Economic and Sensitivity Analyses for an Optimal Hybrid Power System Which Is Adaptable and Effective for Rural Electrification: A Case Study of Nigeria," Sustainability, MDPI, vol. 11(18), pages 1-25, September.
    4. Zalengera, Collen & Blanchard, Richard E. & Eames, Philip C. & Juma, Alnord M. & Chitawo, Maxon L. & Gondwe, Kondwani T., 2014. "Overview of the Malawi energy situation and A PESTLE analysis for sustainable development of renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 335-347.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jann Michael Weinand & Maximilian Hoffmann & Jan Gopfert & Tom Terlouw & Julian Schonau & Patrick Kuckertz & Russell McKenna & Leander Kotzur & Jochen Lin{ss}en & Detlef Stolten, 2022. "Global LCOEs of decentralized off-grid renewable energy systems," Papers 2212.12742, arXiv.org, revised Mar 2023.
    2. Senthilarasu Sundaram & Manosh C. Paul & Yasser Mahmoudi, 2022. "Research on Hybrid Solar Photovoltaic/Thermal (PV/T) System," Energies, MDPI, vol. 15(3), pages 1-3, January.
    3. Yasir Basheer & Asad Waqar & Saeed Mian Qaisar & Toqeer Ahmed & Nasim Ullah & Sattam Alotaibi, 2022. "Analyzing the Prospect of Hybrid Energy in the Cement Industry of Pakistan, Using HOMER Pro," Sustainability, MDPI, vol. 14(19), pages 1-24, September.
    4. Ali Saleh Aziz & Mohammad Faridun Naim Tajuddin & Tekai Eddine Khalil Zidane & Chun-Lien Su & Abdullahi Abubakar Mas’ud & Mohammed J. Alwazzan & Ali Jawad Kadhim Alrubaie, 2022. "Design and Optimization of a Grid-Connected Solar Energy System: Study in Iraq," Sustainability, MDPI, vol. 14(13), pages 1-29, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Irshad, Ahmad Shah & Ludin, Gul Ahmad & Masrur, Hasan & Ahmadi, Mikaeel & Yona, Atsushi & Mikhaylov, Alexey & Krishnan, Narayanan & Senjyu, Tomonobu, 2023. "Optimization of grid-photovoltaic and battery hybrid system with most technically efficient PV technology after the performance analysis," Renewable Energy, Elsevier, vol. 207(C), pages 714-730.
    2. Brahma, Antara & Saikia, Kangkana & Hiloidhari, Moonmoon & Baruah, D.C., 2016. "GIS based planning of a biomethanation power plant in Assam, India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 596-608.
    3. Bhatt, Ankit & Sharma, M.P. & Saini, R.P., 2016. "Feasibility and sensitivity analysis of an off-grid micro hydro–photovoltaic–biomass and biogas–diesel–battery hybrid energy system for a remote area in Uttarakhand state, India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 53-69.
    4. Michael O. Ukoba & Ogheneruona E. Diemuodeke & Mohammed Alghassab & Henry I. Njoku & Muhammad Imran & Zafar A. Khan, 2020. "Composite Multi-Criteria Decision Analysis for Optimization of Hybrid Renewable Energy Systems for Geopolitical Zones in Nigeria," Sustainability, MDPI, vol. 12(14), pages 1-27, July.
    5. Salmon, Claire & Tanguy, Jeremy, 2016. "Rural Electrification and Household Labor Supply: Evidence from Nigeria," World Development, Elsevier, vol. 82(C), pages 48-68.
    6. Ugwoke, B. & Gershon, O. & Becchio, C. & Corgnati, S.P. & Leone, P., 2020. "A review of Nigerian energy access studies: The story told so far," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    7. Maammeur, H. & Hamidat, A. & Loukarfi, L. & Missoum, M. & Abdeladim, K. & Nacer, T., 2017. "Performance investigation of grid-connected PV systems for family farms: case study of North-West of Algeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1208-1220.
    8. Thomas Sachs & Anna Gründler & Milos Rusic & Gilbert Fridgen, 2019. "Framing Microgrid Design from a Business and Information Systems Engineering Perspective," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 61(6), pages 729-744, December.
    9. Giwa, Adewale & Alabi, Adetunji & Yusuf, Ahmed & Olukan, Tuza, 2017. "A comprehensive review on biomass and solar energy for sustainable energy generation in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 620-641.
    10. Hernández-Escobedo, Q. & Fernández-García, A. & Manzano-Agugliaro, F., 2017. "Solar resource assessment for rural electrification and industrial development in the Yucatan Peninsula (Mexico)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1550-1561.
    11. Aziz, Ali Saleh & Tajuddin, Mohammad Faridun Naim & Adzman, Mohd Rafi & Azmi, Azralmukmin & Ramli, Makbul A.M., 2019. "Optimization and sensitivity analysis of standalone hybrid energy systems for rural electrification: A case study of Iraq," Renewable Energy, Elsevier, vol. 138(C), pages 775-792.
    12. Charlotte Stead & Zia Wadud & Chris Nash & Hu Li, 2019. "Introduction of Biodiesel to Rail Transport: Lessons from the Road Sector," Sustainability, MDPI, vol. 11(3), pages 1-20, February.
    13. Solomon Feleke & Degarege Anteneh & Balamurali Pydi & Raavi Satish & Adel El-Shahat & Almoataz Y. Abdelaziz, 2023. "Feasibility and Potential Assessment of Solar Resources: A Case Study in North Shewa Zone, Amhara, Ethiopia," Energies, MDPI, vol. 16(6), pages 1-15, March.
    14. Li, Chong & Zhou, Dequn & Wang, Hui & Lu, Yuzheng & Li, Dongdong, 2020. "Techno-economic performance study of stand-alone wind/diesel/battery hybrid system with different battery technologies in the cold region of China," Energy, Elsevier, vol. 192(C).
    15. Aziz, Ali Saleh & Tajuddin, Mohammad Faridun Naim & Adzman, Mohd Rafi & Mohammed, Mohd Fayzul & Ramli, Makbul A.M., 2020. "Feasibility analysis of grid-connected and islanded operation of a solar PV microgrid system: A case study of Iraq," Energy, Elsevier, vol. 191(C).
    16. Castañeda-Ayarza, Juan Arturo & Godoi, Beatriz Araújo, 2021. "Macro-environmental influence on the development of Brazilian fuel ethanol between 1975 and 2019," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    17. Molyneaux, Lynette & Wagner, Liam & Foster, John, 2016. "Rural electrification in India: Galilee Basin coal versus decentralised renewable energy micro grids," Renewable Energy, Elsevier, vol. 89(C), pages 422-436.
    18. Juanpera, M. & Ferrer-Martí, L. & Pastor, R., 2022. "Multi-stage optimization of rural electrification planning at regional level considering multiple criteria. Case study in Nigeria," Applied Energy, Elsevier, vol. 314(C).
    19. Tahseen, Samiha & Karney, Bryan, 2017. "Opportunities for increased hydropower diversion at Niagara: An sSWOT analysis," Renewable Energy, Elsevier, vol. 101(C), pages 757-770.
    20. Valerii Havrysh & Antonina Kalinichenko & Edyta Szafranek & Vasyl Hruban, 2022. "Agricultural Land: Crop Production or Photovoltaic Power Plants," Sustainability, MDPI, vol. 14(9), pages 1-23, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6330-:d:649675. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.