IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i18p5925-d638338.html
   My bibliography  Save this article

Numerical Analysis of GDI Flash Boiling Sprays Using Different Fuels

Author

Listed:
  • Raul Payri

    (CMT—Motores Térmicos, Universitat Politècnica de València, Edificio 6D, 46022 Valencia, Spain)

  • Pedro Marti-Aldaravi

    (CMT—Motores Térmicos, Universitat Politècnica de València, Edificio 6D, 46022 Valencia, Spain)

  • Rami Abboud

    (CMT—Motores Térmicos, Universitat Politècnica de València, Edificio 6D, 46022 Valencia, Spain)

  • Abian Bautista

    (MAHLE Electronics SL., Carrer de Nicolau Coprènic, 12, Paterna, 46980 Valencia, Spain)

Abstract

Modeling the fuel injection process in modern gasoline direct injection engines plays a principal role in characterizing the in–cylinder mixture formation and subsequent combustion process. Flash boiling, which usually occurs when the fuel is injected into an ambient pressure below the saturation pressure of the liquid, is characterized by fast breakup and evaporation rates but could lead to undesired behaviors such as spray collapse, which significantly effects the mixture preparation. Four mono–component fuels have been used in this study with the aim of achieving various flashing behaviors utilizing the Spray G injector from the Engine Combustion Network (ECN). The numerical framework was based on a Lagrangian approach and was first validated for the baseline G1 condition. The model was compared with experimental vapor and liquid penetrations, axial gas velocity, droplet sizes and spray morphology and was then extended to the flash boiling condition for iso–octane, n–heptane, n–hexane, and n–pentane. A good agreement was achieved for most of the fuels in terms of spray development and shape, although the computed spray morphology of pentane was not able to capture the spray collapse. Overall, the adopted methodology is promising and can be used for engine combustion modeling with conventional and alternative fuels.

Suggested Citation

  • Raul Payri & Pedro Marti-Aldaravi & Rami Abboud & Abian Bautista, 2021. "Numerical Analysis of GDI Flash Boiling Sprays Using Different Fuels," Energies, MDPI, vol. 14(18), pages 1-23, September.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:5925-:d:638338
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/18/5925/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/18/5925/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cinzia Tornatore & Magnus Sjöberg, 2021. "Optical Investigation of a Partial Fuel Stratification Strategy to Stabilize Overall Lean Operation of a DISI Engine Fueled with Gasoline and E30," Energies, MDPI, vol. 14(2), pages 1-32, January.
    2. Federico Millo & Fabrizio Gullino & Luciano Rolando, 2020. "Methodological Approach for 1D Simulation of Port Water Injection for Knock Mitigation in a Turbocharged DISI Engine," Energies, MDPI, vol. 13(17), pages 1-21, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Yanzhi & Xu, Leilei & Zhu, Yizi & Xu, Shijie & Bai, Xue-Song, 2023. "Numerical study on liquid ammonia direct injection spray characteristics under engine-relevant conditions," Applied Energy, Elsevier, vol. 334(C).
    2. Mohsen Ayoobi & Pedro R. Resende & Alexandre M. Afonso, 2022. "Numerical Investigations of Combustion—An Overview," Energies, MDPI, vol. 15(9), pages 1-5, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fabien Tagliante & Tuan M. Nguyen & Lyle M. Pickett & Hyung Sub Sim, 2021. "Large-Eddy Simulation of Laser-Ignited Direct Injection Gasoline Spray for Emission Control," Energies, MDPI, vol. 14(21), pages 1-22, November.
    2. Thiago Rodrigo Vieira da Silva & Nilton Antonio Diniz Netto & Jeanine Costa Santos & Augusto Cesar Teixeira Malaquias & José Guilherme Coelho Baêta, 2022. "Development Procedure for Performance Estimation and Main Dimensions Calculation of a Highly-Boosted Ethanol Engine with Water Injection," Energies, MDPI, vol. 15(13), pages 1-24, June.
    3. Paolo Sementa & Cinzia Tornatore & Francesco Catapano & Silvana Di Iorio & Bianca Maria Vaglieco, 2023. "Custom-Designed Pre-Chamber: Investigating the Effects on Small SI Engine in Active and Passive Modes," Energies, MDPI, vol. 16(13), pages 1-24, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:5925-:d:638338. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.