IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i17p5509-d628641.html
   My bibliography  Save this article

Machine Learning-Based Production Prediction Model and Its Application in Duvernay Formation

Author

Listed:
  • Zekun Guo

    (The Research Institute of Petroleum Exploration & Development CNPC, Beijing 100083, China)

  • Hongjun Wang

    (The Research Institute of Petroleum Exploration & Development CNPC, Beijing 100083, China)

  • Xiangwen Kong

    (The Research Institute of Petroleum Exploration & Development CNPC, Beijing 100083, China)

  • Li Shen

    (The Research Institute of Petroleum Exploration & Development CNPC, Beijing 100083, China)

  • Yuepeng Jia

    (The Research Institute of Petroleum Exploration & Development CNPC, Beijing 100083, China)

Abstract

The production of a single gas well is influenced by many geological and completion factors. The aim of this paper is to build a production prediction model based on machine learning technique and identify the most important factor for production. Firstly, around 159 horizontal wells were collected, targeting the Duvernay Formation with detailed geological and completion records. Secondly, the key factors were selected using grey relation analysis and Pearson correlation. Then, three statistical models were built through multiple linear regression (MLR), support vector regression (SVR), gaussian process regression (GPR). The model inputs include fluid volume, proppant amount, cluster counts, stage counts, total horizontal lateral length, gas saturation, total organic carbon content, condensate-gas ratio. The model performance was assessed by root mean squared errors (RMSE) and R-squared value. Finally, sensitivity analysis was applied based on best performance model. The analysis shows following conclusions: (1) GPR model shows the best performance with the highest R-squared value and the lowest RMSE. In the testing set, the model shows a R-squared of 0.8 with a RMSE of 280.54 × 10 4 m 3 in the prediction of cumulative gas production within 1st 6 producing months and gives a R-squared of 0.83 with a RMSE of 1884.3 t in the prediction of cumulative oil production within 1st 6 producing months (2) Sensitivity analysis based on GPR model indicates that condensate-gas ratio, fluid volume, and total organic carbon content are the most important features to cumulative oil production within 1st 6 producing months. Fluid volume, Stages, and total organic carbon content are the most significant factors to cumulative gas production within 1st 6 producing months. The analysis progress and results developed in this study will assist companies to build prediction models and figure out which factors control well performance.

Suggested Citation

  • Zekun Guo & Hongjun Wang & Xiangwen Kong & Li Shen & Yuepeng Jia, 2021. "Machine Learning-Based Production Prediction Model and Its Application in Duvernay Formation," Energies, MDPI, vol. 14(17), pages 1-17, September.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:17:p:5509-:d:628641
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/17/5509/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/17/5509/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Sen & Qin, Chaoxu & Feng, Qihong & Javadpour, Farzam & Rui, Zhenhua, 2021. "A framework for predicting the production performance of unconventional resources using deep learning," Applied Energy, Elsevier, vol. 295(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Utomo Pratama Iskandar & Masanori Kurihara, 2022. "Time-Series Forecasting of a CO 2 -EOR and CO 2 Storage Project Using a Data-Driven Approach," Energies, MDPI, vol. 15(13), pages 1-22, June.
    2. Hai Wang & Shengnan Chen, 2023. "Insights into the Application of Machine Learning in Reservoir Engineering: Current Developments and Future Trends," Energies, MDPI, vol. 16(3), pages 1-11, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Ruyang & Zhang, Kai & Ramasubramanian, Brindha & Jiang, Shu & Ramakrishna, Seeram & Tang, Yuhang, 2024. "Ensemble learning for predicting average thermal extraction load of a hydrothermal geothermal field: A case study in Guanzhong Basin, China," Energy, Elsevier, vol. 296(C).
    2. Łukasz Klimkowski, 2024. "An Artificial Neural Network Model for a Comprehensive Assessment of the Production Performance of Multiple Fractured Unconventional Tight Gas Wells," Energies, MDPI, vol. 17(13), pages 1-26, June.
    3. Qihong Feng & Kuankuan Wu & Jiyuan Zhang & Sen Wang & Xianmin Zhang & Daiyu Zhou & An Zhao, 2022. "Optimization of Well Control during Gas Flooding Using the Deep-LSTM-Based Proxy Model: A Case Study in the Baoshaceng Reservoir, Tarim, China," Energies, MDPI, vol. 15(7), pages 1-14, March.
    4. Niu, Wente & Lu, Jialiang & Sun, Yuping & Zhang, Xiaowei & Li, Qiaojing & Cao, Xu & Liang, Pingping & Zhan, Hongming, 2024. "Techno-economic integration evaluation in shale gas development based on ensemble learning," Applied Energy, Elsevier, vol. 357(C).
    5. Lu, Peng & Ye, Lin & Zhao, Yongning & Dai, Binhua & Pei, Ming & Tang, Yong, 2021. "Review of meta-heuristic algorithms for wind power prediction: Methodologies, applications and challenges," Applied Energy, Elsevier, vol. 301(C).
    6. Zhou, Guangzhao & Guo, Zanquan & Sun, Simin & Jin, Qingsheng, 2023. "A CNN-BiGRU-AM neural network for AI applications in shale oil production prediction," Applied Energy, Elsevier, vol. 344(C).
    7. Yi, Jun & Qi, ZhongLi & Li, XiangChengZhen & Liu, Hong & Zhou, Wei, 2024. "Spatial correlation-based machine learning framework for evaluating shale gas production potential: A case study in southern Sichuan Basin, China," Applied Energy, Elsevier, vol. 357(C).
    8. Yang, Jiuqiang & Lin, Niantian & Zhang, Kai & Fu, Chao & Zhang, Chong, 2024. "Transfer learning-based hybrid deep learning method for gas-bearing distribution prediction with insufficient training samples and uncertainty analysis," Energy, Elsevier, vol. 299(C).
    9. Yang, Run & Liu, Xiangui & Yu, Rongze & Hu, Zhiming & Duan, Xianggang, 2022. "Long short-term memory suggests a model for predicting shale gas production," Applied Energy, Elsevier, vol. 322(C).
    10. Xianmin Zhang & Jiawei Ren & Qihong Feng & Xianjun Wang & Wei Wang, 2021. "Prediction of Refracturing Timing of Horizontal Wells in Tight Oil Reservoirs Based on an Integrated Learning Algorithm," Energies, MDPI, vol. 14(20), pages 1-16, October.
    11. Ziwu Zhou & Ao Xia & Rui Guo & Lin Chen & Fengshuo Kong & Xiaoliang Zhao, 2023. "Seepage Model and Pressure Response Characteristics of Non-Orthogonal Multi-Fracture Vertical Wells with Superimposed Sand Body in Tight Gas Reservoirs," Energies, MDPI, vol. 16(21), pages 1-17, October.
    12. Du, Shuyi & Wang, Jiulong & Wang, Meizhu & Yang, Jiaosheng & Zhang, Cong & Zhao, Yang & Song, Hongqing, 2023. "A systematic data-driven approach for production forecasting of coalbed methane incorporating deep learning and ensemble learning adapted to complex production patterns," Energy, Elsevier, vol. 263(PE).
    13. Ali Rezaei & Fred Aminzadeh, 2022. "A Data-Driven Reduced-Order Model for Estimating the Stimulated Reservoir Volume (SRV)," Energies, MDPI, vol. 15(15), pages 1-23, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:17:p:5509-:d:628641. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.