IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i16p5216-d620253.html
   My bibliography  Save this article

Monitoring the Geometry Morphology of Complex Hydraulic Fracture Network by Using a Multiobjective Inversion Algorithm Based on Decomposition

Author

Listed:
  • Liming Zhang

    (School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China)

  • Lili Xue

    (School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China)

  • Chenyu Cui

    (School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China)

  • Ji Qi

    (School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China)

  • Jijia Sun

    (School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China)

  • Xingyu Zhou

    (School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China)

  • Qinyang Dai

    (School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China)

  • Kai Zhang

    (School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China
    School of Civil Engineering, Qingdao University of Technology, Qingdao 266520, China)

Abstract

The fracturing technique is widely used in many fields. Fracture has a greater impact on the movement of fluids in formations. Knowing information about a fracture is key to judging its effect, but detailed information about complex fracture networks is difficult to obtain. In this paper, we propose a new method to describe the shape of a complex fracture network. This method is based on microseismic results and uses the L-system to establish a method for characterizing a complex fracture network. The method also combines with decomposition to construct a new method called the multiobjective fracture network inversion algorithm based on decomposition (MOFNIAD). The coverage of microseismic monitoring results and the degree of fitting of production data are the two objective functions of the inversion fracture network. The multiobjective fracture network inversion algorithm can be optimized to obtain multiple optimal solutions that meet different target weights. Therefore, this paper established a multischeme decision method that approached the ideal solution, sorting technology and AHP to provide theoretical guidance for finding a more ideal fracture network. According to the error of microseismic monitoring results, we established two cases of fracture to verify the proposed method. Judging from the results of the examples, the fracture network finally obtained was similar to actual fractures.

Suggested Citation

  • Liming Zhang & Lili Xue & Chenyu Cui & Ji Qi & Jijia Sun & Xingyu Zhou & Qinyang Dai & Kai Zhang, 2021. "Monitoring the Geometry Morphology of Complex Hydraulic Fracture Network by Using a Multiobjective Inversion Algorithm Based on Decomposition," Energies, MDPI, vol. 14(16), pages 1-21, August.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:5216-:d:620253
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/16/5216/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/16/5216/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vaidya, Omkarprasad S. & Kumar, Sushil, 2006. "Analytic hierarchy process: An overview of applications," European Journal of Operational Research, Elsevier, vol. 169(1), pages 1-29, February.
    2. Xu, Xiaofeng & Wang, Chenglong & Zhou, Peng, 2021. "GVRP considered oil-gas recovery in refined oil distribution: From an environmental perspective," International Journal of Production Economics, Elsevier, vol. 235(C).
    3. Ho, William, 2008. "Integrated analytic hierarchy process and its applications - A literature review," European Journal of Operational Research, Elsevier, vol. 186(1), pages 211-228, April.
    4. Xu, Xiaofeng & Wei, Zhifei & Ji, Qiang & Wang, Chenglong & Gao, Guowei, 2019. "Global renewable energy development: Influencing factors, trend predictions and countermeasures," Resources Policy, Elsevier, vol. 63(C), pages 1-1.
    5. Cayir Ervural, Beyzanur & Evren, Ramazan & Delen, Dursun, 2018. "A multi-objective decision-making approach for sustainable energy investment planning," Renewable Energy, Elsevier, vol. 126(C), pages 387-402.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Madjid Tavana & Mariya Sodenkamp & Leena Suhl, 2010. "A soft multi-criteria decision analysis model with application to the European Union enlargement," Annals of Operations Research, Springer, vol. 181(1), pages 393-421, December.
    2. Weiming Liu & Yating Qiu & Lijiang Jia & Hang Zhou, 2022. "Carbon Emissions Trading and Green Technology Innovation—A Quasi-natural Experiment Based on a Carbon Trading Market Pilot," IJERPH, MDPI, vol. 19(24), pages 1-13, December.
    3. M Tavana & M A Sodenkamp, 2010. "A fuzzy multi-criteria decision analysis model for advanced technology assessment at Kennedy Space Center," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(10), pages 1459-1470, October.
    4. Paweł Karczmarek & Witold Pedrycz & Adam Kiersztyn, 2021. "Fuzzy Analytic Hierarchy Process in a Graphical Approach," Group Decision and Negotiation, Springer, vol. 30(2), pages 463-481, April.
    5. J Aznar & J Ferrís-Oñate & F Guijarro, 2010. "An ANP framework for property pricing combining quantitative and qualitative attributes," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(5), pages 740-755, May.
    6. Garyfallos Arabatzis & Georgios Kolkos & Anastasia Stergiadou & Apostolos Kantartzis & Stergios Tampekis, 2024. "Optimal Allocation of Water Reservoirs for Sustainable Wildfire Prevention Planning via AHP-TOPSIS and Forest Road Network Analysis," Sustainability, MDPI, vol. 16(2), pages 1-27, January.
    7. Chen, Jeng-Chung & Lin, Shu-Chiang & Yu, Vincent F., 2017. "Structuring an effective human error intervention strategy selection model for commercial aviation," Journal of Air Transport Management, Elsevier, vol. 60(C), pages 65-75.
    8. Rahul S. Mor & Arvind Bhardwaj & Sarbjit Singh, 2019. "Integration of SWOT-AHP Approach for Measuring the Critical Factors of Dairy Supply Chain," Logistics, MDPI, vol. 3(1), pages 1-14, February.
    9. Chen, Shuo-Pei & Wu, Wann-Yih, 2010. "A systematic procedure to evaluate an automobile manufacturer-distributor partnership," European Journal of Operational Research, Elsevier, vol. 205(3), pages 687-698, September.
    10. Yijing Chu & Yingying Wang & Zucheng Zhang & Shengli Dai, 2022. "Decoupling of Economic Growth and Industrial Water Use in Hubei Province: From an Ecological–Economic Interaction Perspective," Sustainability, MDPI, vol. 14(20), pages 1-15, October.
    11. repec:jle:journl:132 is not listed on IDEAS
    12. Briliantie Irma & Imam Baihaqi, 2018. "The integration of AHP and QFD for contractors selection," Journal of Advances in Technology and Engineering Research, A/Professor Akbar A. Khatibi, vol. 4(3), pages 118-129.
    13. Seyed Saeed Hosseinian & Hamidreza Navidi & Abas Hajfathaliha, 2012. "A New Linear Programming Method for Weights Generation and Group Decision Making in the Analytic Hierarchy Process," Group Decision and Negotiation, Springer, vol. 21(3), pages 233-254, May.
    14. Jana Krejčí & Alessio Ishizaka, 2018. "FAHPSort: A Fuzzy Extension of the AHPSort Method," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 17(04), pages 1119-1145, July.
    15. Lin, Ming-Ian & Lee, Yuan-Duen & Ho, Tsai-Neng, 2011. "Applying integrated DEA/AHP to evaluate the economic performance of local governments in China," European Journal of Operational Research, Elsevier, vol. 209(2), pages 129-140, March.
    16. Lu, Hua-An & Mao, Yun-Ru, 2015. "Evaluation of airport conditions to attract foreign low cost carriers: A case study of Taiwan," Journal of Air Transport Management, Elsevier, vol. 42(C), pages 297-305.
    17. Jakub Brzostowski & Ewa Roszkowska & Tomasz Wachowicz, 2012. "Using an Analytic Hierarchy Process to develop a scoring system for a set of continuous feasible alternatives in negotiation," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 22(4), pages 21-40.
    18. A Ishizaka & D Balkenborg & T Kaplan, 2011. "Influence of aggregation and measurement scale on ranking a compromise alternative in AHP," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(4), pages 700-710, April.
    19. Lundström, Johanna & Öhman, Karin & Rönnqvist, Mikael & Gustafsson, Lena, 2014. "How reserve selection is affected by preferences in Swedish boreal forests," Forest Policy and Economics, Elsevier, vol. 41(C), pages 40-50.
    20. A Ishizaka & D Balkenborg & T Kaplan, 2011. "Does AHP help us make a choice? An experimental evaluation," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(10), pages 1801-1812, October.
    21. S Taghipour & D Banjevic & A K S Jardine, 2011. "Prioritization of medical equipment for maintenance decisions," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(9), pages 1666-1687, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:5216-:d:620253. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.