IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i16p5138-d618054.html
   My bibliography  Save this article

A Strategic and Smart Environmental Assessment of Rapid Urbanization in Beijing

Author

Listed:
  • Paulina Rodríguez Fiscal

    (Faculty of Engineering, University of Mons, 7000 Mons, Belgium)

  • Rallou Taratori

    (Faculty of Engineering, University of Mons, 7000 Mons, Belgium)

  • Marie Abigail Pacho

    (Faculty of Engineering, University of Mons, 7000 Mons, Belgium)

  • Christos S. Ioakimidis

    (Center for Research and Technology Hellas/Hellenic Institute of Transport, CERTH/HIT, 6th Km Charilaou—Thermi Rd., Thermi, Thessaloniki, Macedonia, 57001 Hellas, Greece)

  • Sesil Koutra

    (Faculty of Engineering, University of Mons, 7000 Mons, Belgium
    Faculty of Architecture and Urban Planning, Faculty of Engineering, Rue d’Havre 88, University of Mons, 7000 Mons, Belgium)

Abstract

One of the key challenges of developing countries is to tackle the mitigation of the impacts of rapid and uncontrolled urbanization. Assessing this phenomenon is crucial to lessen the consequences for the environment and society. ‘Literature has been concentrated in planning strategies for the cities’ adaptation and engagements to the principles of green development ensuring a long-term quality of life for their citizens. Hereby, smart technologies and applications consist of two of the most encouraging concepts for solutions for achieving the 2030 and 2050 horizon targets towards clean energy transition and carbon neutrality. In academia, scholars have already raised the importance of ‘smartness’ to define the adaptative patterns for the global pressures of climate change and uncontrolled urban growth. The mitigation of these phenomena is crucial to ensure the cities’ future and lessen their impacts. This study seeks a strategic and smart-driven vision to leverage smartness on the phenomenon of rapid urbanization that occurred in the case of Beijing, China. Defining and evaluating the environmental impacts in line with the RIAM approach as one of its main targets. Future works can be focused on addressing solutions in similar cases in further developing countries to not only overcome environmental, but also economic, social, and digital complications.

Suggested Citation

  • Paulina Rodríguez Fiscal & Rallou Taratori & Marie Abigail Pacho & Christos S. Ioakimidis & Sesil Koutra, 2021. "A Strategic and Smart Environmental Assessment of Rapid Urbanization in Beijing," Energies, MDPI, vol. 14(16), pages 1-22, August.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:5138-:d:618054
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/16/5138/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/16/5138/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Frick, Susanne A. & Rodríguez-Pose, Andrés, 2018. "Change in urban concentration and economic growth," World Development, Elsevier, vol. 105(C), pages 156-170.
    2. Shadi Shayan & Ki Pyung Kim & Tony Ma & Tan Hai Dang Nguyen, 2020. "The First Two Decades of Smart City Research from a Risk Perspective," Sustainability, MDPI, vol. 12(21), pages 1-20, November.
    3. Ness, Barry & Urbel-Piirsalu, Evelin & Anderberg, Stefan & Olsson, Lennart, 2007. "Categorising tools for sustainability assessment," Ecological Economics, Elsevier, vol. 60(3), pages 498-508, January.
    4. Kyle Farrell, 2017. "The Rapid Urban Growth Triad: A New Conceptual Framework for Examining the Urban Transition in Developing Countries," Sustainability, MDPI, vol. 9(8), pages 1-19, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rubio Rodríguez, M.A. & Ruyck, J. De & Díaz, P. Roque & Verma, V.K. & Bram, S., 2011. "An LCA based indicator for evaluation of alternative energy routes," Applied Energy, Elsevier, vol. 88(3), pages 630-635, March.
    2. Figge, Frank & Hahn, Tobias & Barkemeyer, Ralf, 2014. "The If, How and Where of assessing sustainable resource use," Ecological Economics, Elsevier, vol. 105(C), pages 274-283.
    3. L. Hay & A. H. B. Duffy & R. I. Whitfield, 2017. "The S‐Cycle Performance Matrix: Supporting Comprehensive Sustainability Performance Evaluation of Technical Systems," Systems Engineering, John Wiley & Sons, vol. 20(1), pages 45-70, January.
    4. Jean-Marc Douguet & Pierre Failler & Gianluca Ferraro, 2022. "Sustainability Assessment of the Societal Costs of Fishing Activities in a Deliberative Perspective," Sustainability, MDPI, vol. 14(10), pages 1-21, May.
    5. Diana Tuomasjukka & Staffan Berg & Marcus Lindner, 2013. "Managing Sustainability of Fennoscandian Forests and Their Use by Law and/or Agreement: For Whom and Which Purpose?," Sustainability, MDPI, vol. 6(1), pages 1-32, December.
    6. Georgiadou, Maria Christina & Hacking, Theophilus & Guthrie, Peter, 2012. "A conceptual framework for future-proofing the energy performance of buildings," Energy Policy, Elsevier, vol. 47(C), pages 145-155.
    7. Mostafa Shaaban & Jürgen Scheffran & Jürgen Böhner & Mohamed S. Elsobki, 2018. "Sustainability Assessment of Electricity Generation Technologies in Egypt Using Multi-Criteria Decision Analysis," Energies, MDPI, vol. 11(5), pages 1-25, May.
    8. Ngoc-Ninh Ho & Truong Lam Do & Dinh-Thao Tran & Trung Thanh Nguyen, 2022. "Indigenous pig production and welfare of ultra-poor ethnic minority households in the Northern mountains of Vietnam," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(1), pages 156-179, January.
    9. Jorge M. Uribe, 2023. ""Fiscal crises and climate change"," IREA Working Papers 202303, University of Barcelona, Research Institute of Applied Economics, revised Feb 2023.
    10. Schilling, Markus & Chiang, Lichun, 2011. "The effect of natural resources on a sustainable development policy: The approach of non-sustainable externalities," Energy Policy, Elsevier, vol. 39(2), pages 990-998, February.
    11. Alexandra Doernberg & Annette Piorr & Ingo Zasada & Dirk Wascher & Ulrich Schmutz, 2022. "Sustainability assessment of short food supply chains (SFSC): developing and testing a rapid assessment tool in one African and three European city regions," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 39(3), pages 885-904, September.
    12. Simone Di Leo & Marta Chicca & Cinzia Daraio & Andrea Guerrini & Stefano Scarcella, 2022. "A Framework for the Analysis of the Sustainability of the Energy Retail Market," Sustainability, MDPI, vol. 14(12), pages 1-28, June.
    13. Peura, Pekka, 2013. "From Malthus to sustainable energy—Theoretical orientations to reforming the energy sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 309-327.
    14. Oriana Gava & Fabio Bartolini & Francesca Venturi & Gianluca Brunori & Angela Zinnai & Alberto Pardossi, 2018. "A Reflection of the Use of the Life Cycle Assessment Tool for Agri-Food Sustainability," Sustainability, MDPI, vol. 11(1), pages 1-16, December.
    15. Bryan Jones & Deborah Balk & Stefan Leyk, 2020. "Urban Change in the United States, 1990–2010: A Spatial Assessment of Administrative Reclassification," Sustainability, MDPI, vol. 12(4), pages 1-20, February.
    16. Weiwei Li & Pingtao Yi & Danning Zhang, 2018. "Sustainability Evaluation of Cities in Northeastern China Using Dynamic TOPSIS-Entropy Methods," Sustainability, MDPI, vol. 10(12), pages 1-15, December.
    17. Michinori Uwasu & Keishiro Hara & Masashi Kuroda & Ji Han, 2024. "Assessing the Spatiotemporal Dynamics of Environmental Sustainability in China," Sustainability, MDPI, vol. 16(13), pages 1-14, June.
    18. Carlo Carraro & Lorenza Campagnolo & Fabio Eboli & Elisa Lanzi & Ramiro Parrado & Elisa Portale, 2012. "Quantifying Sustainability: A New Approach and World Ranking," Working Papers 2012.94, Fondazione Eni Enrico Mattei.
    19. Frame, Bob & Brown, Judy, 2008. "Developing post-normal technologies for sustainability," Ecological Economics, Elsevier, vol. 65(2), pages 225-241, April.
    20. Badir S. Alsaeed & Dexter V. L. Hunt & Soroosh Sharifi, 2024. "A Sustainable Water Resources Management Assessment Framework (SWRM-AF) for Arid and Semi-Arid Regions—Part 1: Developing the Conceptual Framework," Sustainability, MDPI, vol. 16(7), pages 1-43, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:5138-:d:618054. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.