IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i16p4745-d608486.html
   My bibliography  Save this article

Micronization of Hard Coal with the Use of a High-Pressure Water Jet

Author

Listed:
  • Przemysław J. Borkowski

    (Faculty of Geoengineering Mining and Geology, Wroclaw University of Technology, Na Grobli 15, 50-421 Wrocław, Poland)

  • Wiesław Szada-Borzyszkowski

    (Koszalin University of Technology, Branch of the KUT in Szczecinek, Waryńskiego 1, 78-400 Szczecinek, Poland)

Abstract

This paper presents an original method for the micronization of coal particles in a hydro-jet mill, which allows effective comminuting of coal in the pressure range of 100–250 MPa, at a variable water flow rate of 0.2–0.5 dm 3 /s. The discussed high-pressure water jet mill (HPWJM) allows the comminution of standard fines, with a grain size up to 2 mm, and at a relatively high comminuting efficiency of 8 to 55 g/s. In addition, the paper presents energy-consumption ratios, and indicates the advantage of this method over mechanical grinding in a planetary ball-mill. At optimum conditions, coal comminution at an efficiency of Q c = 38.4 g/s and at an energy input of E H = 1.1 MJ/kg provides an average particle size of about 40 µm. The degree of comminution was further improved by applying roto-turbulent micronization, which resulted in an average size of comminuted coal particles of only 17 µm. As an additional result, the actual surface area of the particles increased by 10–30 thousand times when compared to ground fines—this fact is of significance for the application of micronized particles in quasi-liquid coal-water fuel.

Suggested Citation

  • Przemysław J. Borkowski & Wiesław Szada-Borzyszkowski, 2021. "Micronization of Hard Coal with the Use of a High-Pressure Water Jet," Energies, MDPI, vol. 14(16), pages 1-15, August.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:4745-:d:608486
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/16/4745/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/16/4745/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Przemyslaw J. Borkowski, 2020. "Comminution of Copper Ores with the Use of a High-Pressure Water Jet," Energies, MDPI, vol. 13(23), pages 1-11, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yan Liu & Yong Zhou & Wen Lv & Haidong Huang & Guozhong Zhang & Ming Tu & Lin Huang, 2021. "Design and Experiment of Hydraulic Scouring System of Wide-Width Lotus Root Digging Machine," Agriculture, MDPI, vol. 11(11), pages 1-20, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dawid Szurgacz & Beata Borska & Sergey Zhironkin & Ryszard Diederichs & Anthony J. S. Spearing, 2022. "Optimization of the Load Capacity System of Powered Roof Support: A Review," Energies, MDPI, vol. 15(16), pages 1-15, August.
    2. Dawid Szurgacz, 2021. "Dynamic Analysis for the Hydraulic Leg Power of a Powered Roof Support," Energies, MDPI, vol. 14(18), pages 1-12, September.
    3. Dawid Szurgacz & Beata Borska & Ryszard Diederichs & Anthony J. S. Spearing & Sergey Zhironkin, 2023. "Minimizing Internal Leaks of a Powered Roof Support’s Hydraulic Prop Based on Double Block with Charging," Energies, MDPI, vol. 16(3), pages 1-14, January.
    4. Dawid Szurgacz & Sergey Zhironkin & Jiří Pokorný & A. J. S. (Sam) Spearing & Stefan Vöth & Michal Cehlár & Izabela Kowalewska, 2021. "Development of an Active Training Method for Belt Conveyor," IJERPH, MDPI, vol. 19(1), pages 1-12, December.
    5. Dawid Szurgacz & Sergey Zhironkin & Stefan Vöth & Jiří Pokorný & A.J.S. (Sam) Spearing & Michal Cehlár & Marta Stempniak & Leszek Sobik, 2021. "Thermal Imaging Study to Determine the Operational Condition of a Conveyor Belt Drive System Structure," Energies, MDPI, vol. 14(11), pages 1-18, June.
    6. Sergey Zhironkin & Dawid Szurgacz, 2022. "Mining Technologies Innovative Development: Industrial, Environmental and Economic Perspectives," Energies, MDPI, vol. 15(5), pages 1-5, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:4745-:d:608486. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.