IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i15p4674-d606682.html
   My bibliography  Save this article

Evaluation Model of Operation State Based on Deep Learning for Smart Meter

Author

Listed:
  • Qingsheng Zhao

    (College of Electrical and Power Engineering, Taiyuan University of Technology, Taiyuan 030024, China
    Shanxi Key Laboratory of Power System Operation and Control, Taiyuan University of Technology, Taiyuan 030024, China)

  • Juwen Mu

    (College of Electrical and Power Engineering, Taiyuan University of Technology, Taiyuan 030024, China
    Shanxi Key Laboratory of Power System Operation and Control, Taiyuan University of Technology, Taiyuan 030024, China)

  • Xiaoqing Han

    (College of Electrical and Power Engineering, Taiyuan University of Technology, Taiyuan 030024, China
    Shanxi Key Laboratory of Power System Operation and Control, Taiyuan University of Technology, Taiyuan 030024, China)

  • Dingkang Liang

    (College of Electrical and Power Engineering, Taiyuan University of Technology, Taiyuan 030024, China
    Shanxi Key Laboratory of Power System Operation and Control, Taiyuan University of Technology, Taiyuan 030024, China)

  • Xuping Wang

    (College of Electrical and Power Engineering, Taiyuan University of Technology, Taiyuan 030024, China)

Abstract

The operation state detection of numerous smart meters is a significant problem caused by manual on-site testing. This paper addresses the problem of improving the malfunction detection efficiency of smart meters using deep learning and proposes a novel evaluation model of operation state for smart meter. This evaluation model adopts recurrent neural networks (RNN) to predict power consumption. According to the prediction residual between predicted power consumption and the observed power consumption, the malfunctioning smart meter is detected. The training efficiency for the prediction model is improved by using transfer learning (TL). This evaluation uses an accumulator algorithm and threshold setting with flexibility for abnormal detection. In the simulation experiment, the detection principle is demonstrated to improve efficient replacement and extend the average using time of smart meters. The effectiveness of the evaluation model was verified on the actual station dataset. It has accurately detected the operation state of smart meters.

Suggested Citation

  • Qingsheng Zhao & Juwen Mu & Xiaoqing Han & Dingkang Liang & Xuping Wang, 2021. "Evaluation Model of Operation State Based on Deep Learning for Smart Meter," Energies, MDPI, vol. 14(15), pages 1-17, August.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:15:p:4674-:d:606682
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/15/4674/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/15/4674/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Qu, Zhijian & Xu, Juan & Wang, Zixiao & Chi, Rui & Liu, Hanxin, 2021. "Prediction of electricity generation from a combined cycle power plant based on a stacking ensemble and its hyperparameter optimization with a grid-search method," Energy, Elsevier, vol. 227(C).
    2. Malekizadeh, M. & Karami, H. & Karimi, M. & Moshari, A. & Sanjari, M.J., 2020. "Short-term load forecast using ensemble neuro-fuzzy model," Energy, Elsevier, vol. 196(C).
    3. Duan, Jikai & Zuo, Hongchao & Bai, Yulong & Duan, Jizheng & Chang, Mingheng & Chen, Bolong, 2021. "Short-term wind speed forecasting using recurrent neural networks with error correction," Energy, Elsevier, vol. 217(C).
    4. Wang, Jian Qi & Du, Yu & Wang, Jing, 2020. "LSTM based long-term energy consumption prediction with periodicity," Energy, Elsevier, vol. 197(C).
    5. Xiangyu Kong & Yuying Ma & Xin Zhao & Ye Li & Yongxing Teng, 2019. "A Recursive Least Squares Method with Double-Parameter for Online Estimation of Electric Meter Errors," Energies, MDPI, vol. 12(5), pages 1-16, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Devi Munandar & Budi Nurani Ruchjana & Atje Setiawan Abdullah & Hilman Ferdinandus Pardede, 2023. "Literature Review on Integrating Generalized Space-Time Autoregressive Integrated Moving Average (GSTARIMA) and Deep Neural Networks in Machine Learning for Climate Forecasting," Mathematics, MDPI, vol. 11(13), pages 1-25, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Konstantinos Blazakis & Yiannis Katsigiannis & Georgios Stavrakakis, 2022. "One-Day-Ahead Solar Irradiation and Windspeed Forecasting with Advanced Deep Learning Techniques," Energies, MDPI, vol. 15(12), pages 1-25, June.
    2. Sergey Obukhov & Emad M. Ahmed & Denis Y. Davydov & Talal Alharbi & Ahmed Ibrahim & Ziad M. Ali, 2021. "Modeling Wind Speed Based on Fractional Ornstein-Uhlenbeck Process," Energies, MDPI, vol. 14(17), pages 1-15, September.
    3. Qingyuan Wang & Longnv Huang & Jiehui Huang & Qiaoan Liu & Limin Chen & Yin Liang & Peter X. Liu & Chunquan Li, 2022. "A Hybrid Generative Adversarial Network Model for Ultra Short-Term Wind Speed Prediction," Sustainability, MDPI, vol. 14(15), pages 1-16, July.
    4. Li, Guanzheng & Li, Bin & Li, Chao & Wang, Shuai, 2023. "State-of-health rapid estimation for lithium-ion battery based on an interpretable stacking ensemble model with short-term voltage profiles," Energy, Elsevier, vol. 263(PE).
    5. Tian, Zhongda & Chen, Hao, 2021. "Multi-step short-term wind speed prediction based on integrated multi-model fusion," Applied Energy, Elsevier, vol. 298(C).
    6. Lu, Yakai & Tian, Zhe & Zhou, Ruoyu & Liu, Wenjing, 2021. "A general transfer learning-based framework for thermal load prediction in regional energy system," Energy, Elsevier, vol. 217(C).
    7. Dong, Ming & Shi, Jian & Shi, Qingxin, 2020. "Multi-year long-term load forecast for area distribution feeders based on selective sequence learning," Energy, Elsevier, vol. 206(C).
    8. Chen, Jiandong & Xu, Chong & Shahbaz, Muhammad & Song, Malin, 2021. "Interaction determinants and projections of China’s energy consumption: 1997–2030," Applied Energy, Elsevier, vol. 283(C).
    9. Qu, Zhijian & Xu, Juan & Wang, Zixiao & Chi, Rui & Liu, Hanxin, 2021. "Prediction of electricity generation from a combined cycle power plant based on a stacking ensemble and its hyperparameter optimization with a grid-search method," Energy, Elsevier, vol. 227(C).
    10. Kong, Xiangyu & Zhang, Xiaopeng & Li, Gang & Dong, Delong & Li, Ye, 2020. "An estimation method of smart meter errors based on DREM and DRLS," Energy, Elsevier, vol. 204(C).
    11. Tharindu P. De Alwis & S. Yaser Samadi, 2024. "Stacking-based neural network for nonlinear time series analysis," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 33(3), pages 901-924, July.
    12. Ye, Zhongnan & Cheng, Kuangly & Hsu, Shu-Chien & Wei, Hsi-Hsien & Cheung, Clara Man, 2021. "Identifying critical building-oriented features in city-block-level building energy consumption: A data-driven machine learning approach," Applied Energy, Elsevier, vol. 301(C).
    13. Meng, Qinglong & Wei, Ying'an & Fan, Jingjing & Li, Yanbo & Zhao, Fan & Lei, Yu & Sun, Hang & Jiang, Le & Yu, Lingli, 2024. "Peak regulation strategies for ground source heat pump demand response of based on load forecasting: A case study of rural building in China," Renewable Energy, Elsevier, vol. 224(C).
    14. Li, Ke & Shen, Ruifang & Wang, Zhenguo & Yan, Bowen & Yang, Qingshan & Zhou, Xuhong, 2023. "An efficient wind speed prediction method based on a deep neural network without future information leakage," Energy, Elsevier, vol. 267(C).
    15. Bai, Yulong & Liu, Ming-De & Ding, Lin & Ma, Yong-Jie, 2021. "Double-layer staged training echo-state networks for wind speed prediction using variational mode decomposition," Applied Energy, Elsevier, vol. 301(C).
    16. Zhang, Yagang & Zhang, Jinghui & Yu, Leyi & Pan, Zhiya & Feng, Changyou & Sun, Yiqian & Wang, Fei, 2022. "A short-term wind energy hybrid optimal prediction system with denoising and novel error correction technique," Energy, Elsevier, vol. 254(PC).
    17. Yang, Yang & Wang, Xiuqin, 2022. "A novel modified conformable fractional grey time-delay model for power generation prediction," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    18. Guillaume Guerard & Hugo Pousseur & Ihab Taleb, 2021. "Isolated Areas Consumption Short-Term Forecasting Method," Energies, MDPI, vol. 14(23), pages 1-23, November.
    19. Gao, Kangping & Xu, Xinxin & Jiao, Shengjie, 2022. "Prediction and visualization analysis of drilling energy consumption based on mechanism and data hybrid drive," Energy, Elsevier, vol. 261(PA).
    20. Feng, Yayuan & Yao, Jian & Li, Zhonghao & Zheng, Rongyue, 2022. "Uncertainty prediction of energy consumption in buildings under stochastic shading adjustment," Energy, Elsevier, vol. 254(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:15:p:4674-:d:606682. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.