IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i15p4516-d601908.html
   My bibliography  Save this article

Basic Experimental Study of Plasticity Material for Coal Rock Fracture Grouting Based on RSM-PCA Technology

Author

Listed:
  • Weitao Liu

    (College of Energy and Mining Engineering, Shandong University of Science and Technology, Qingdao 266590, China)

  • Yueyun Qin

    (College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
    State Key Laboratory of Mining Disaster Prevention, Shandong University of Science and Technology, Qingdao 266590, China)

  • Xiangxi Meng

    (College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
    State Key Laboratory of Mining Disaster Prevention, Shandong University of Science and Technology, Qingdao 266590, China)

  • Lifu Pang

    (College of Energy and Mining Engineering, Shandong University of Science and Technology, Qingdao 266590, China)

  • Mengke Han

    (College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China)

  • Zengmou Song

    (College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China)

Abstract

The internal fractures in coal and rock mass are important factors affecting the safety of underground engineering such as coalbed methane exploitation, so the comprehensive properties of materials used to seal the fractures are particularly critical. In this paper, firstly, the indexes of the main factors affecting the plugging material (viscosity, bleeding rate, setting time, and strength) were analyzed. Then, the sensitivity of the materials used to seal the fractures was studied and discussed using a principal component analysis and response surface analysis (RSM-PCA). The primary conclusions are as follows: (1) Bleed rate and setting time were the first principal components affecting the comprehensive properties of the plugging materials, and compressive strength was the second principal component. (2) The regression equation was established to characterize the comprehensive properties of the integrated plugging materials, and the optimal mix ratio was 34% of cement content, 11% of sand content, and 0.53 of the W/C. (3) The microscopic results showed that the silicate minerals in the consolidated body grow in a bridging manner and formed a mixed gel with cement hydration product to fill the pores and microcracks and improved the interface transition zone.

Suggested Citation

  • Weitao Liu & Yueyun Qin & Xiangxi Meng & Lifu Pang & Mengke Han & Zengmou Song, 2021. "Basic Experimental Study of Plasticity Material for Coal Rock Fracture Grouting Based on RSM-PCA Technology," Energies, MDPI, vol. 14(15), pages 1-20, July.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:15:p:4516-:d:601908
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/15/4516/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/15/4516/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dan Ma & Qiang Li & Matthew R. Hall & Yu Wu, 2017. "Experimental Investigation of Stress Rate and Grain Size on Gas Seepage Characteristics of Granular Coal," Energies, MDPI, vol. 10(4), pages 1-15, April.
    2. Yutao Li & Yixin Zhao & Yaodong Jiang & Bo Zhang & Honghua Song & Bin Liu, 2020. "Characteristics of Pore and Fracture of Coal with Bursting Proneness Based on DIC and Fractal Theory," Energies, MDPI, vol. 13(20), pages 1-19, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Weitao & Sun, Yida & Meng, Xiangxi & Qin, Yueyun, 2023. "Experimental analysis of Nano-SiO2 modified waterborne epoxy resin on the properties and microstructure of cement-based grouting materials," Energy, Elsevier, vol. 268(C).
    2. Xi, Xian & Jiang, Shuguang & Shi, Quanlin, 2023. "Study on the flow and bonding-reinforcement characteristics of composite foam slurry material used to block mine leakage," Energy, Elsevier, vol. 263(PD).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hongwei Zhang & Zhijun Wan & Dan Ma & Bo Zhang & Peng Zhou, 2017. "Coupled Effects of Moisture Content and Inherent Clay Minerals on the Cohesive Strength of Remodelled Coal," Energies, MDPI, vol. 10(8), pages 1-12, August.
    2. Zhen Li & Guorui Feng & Haina Jiang & Shengyong Hu & Jiaqing Cui & Cheng Song & Qiang Gao & Tingye Qi & Xiangqian Guo & Chao Li & Lixun Kang, 2018. "The correlation between crushed coal porosity and permeability under various methane pressure gradients: a case study using Jincheng anthracite," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(3), pages 493-509, June.
    3. Dan Ma & Zilong Zhou & Jiangyu Wu & Qiang Li & Haibo Bai, 2017. "Grain Size Distribution Effect on the Hydraulic Properties of Disintegrated Coal Mixtures," Energies, MDPI, vol. 10(5), pages 1-17, April.
    4. Wu, Mingqiu & Li, Haitao & Wang, Liang & Yang, Xinlei & Dai, Chongyang & Yang, Ning & Li, Jie & Wang, Yu & Yu, Minggao, 2023. "μCT quantitative assessment of the pore–fracture structures and permeability behaviors of long-flame coal treated by infrared rapid heating," Energy, Elsevier, vol. 274(C).
    5. Xing Zeng & Weiqiang Li & Jue Hou & Wenqi Zhao & Yunyang Liu & Yongbo Kang, 2022. "Fractal Characteristics of Pore-Throats Structure and Quality Evaluation of Carbonate Reservoirs in Eastern Margin of Pre-Caspian Basin," Energies, MDPI, vol. 15(17), pages 1-13, August.
    6. Chao Wang & Qiangyong Zhang & Wen Xiang, 2017. "Physical and Numerical Modeling of the Stability of Deep Caverns in Tahe Oil Field in China," Energies, MDPI, vol. 10(6), pages 1-14, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:15:p:4516-:d:601908. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.