IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i14p4315-d596297.html
   My bibliography  Save this article

Incentive-Based Demand Response Framework for Residential Applications: Design and Real-Life Demonstration

Author

Listed:
  • Angelina D. Bintoudi

    (Information Technologies Institute, Centre for Research and Technology—Hellas, 57001 Thessaloniki, Greece)

  • Napoleon Bezas

    (Information Technologies Institute, Centre for Research and Technology—Hellas, 57001 Thessaloniki, Greece)

  • Lampros Zyglakis

    (Information Technologies Institute, Centre for Research and Technology—Hellas, 57001 Thessaloniki, Greece)

  • Georgios Isaioglou

    (Information Technologies Institute, Centre for Research and Technology—Hellas, 57001 Thessaloniki, Greece)

  • Christos Timplalexis

    (Information Technologies Institute, Centre for Research and Technology—Hellas, 57001 Thessaloniki, Greece)

  • Paschalis Gkaidatzis

    (Information Technologies Institute, Centre for Research and Technology—Hellas, 57001 Thessaloniki, Greece)

  • Athanasios Tryferidis

    (Information Technologies Institute, Centre for Research and Technology—Hellas, 57001 Thessaloniki, Greece)

  • Dimosthenis Ioannidis

    (Information Technologies Institute, Centre for Research and Technology—Hellas, 57001 Thessaloniki, Greece)

  • Dimitrios Tzovaras

    (Information Technologies Institute, Centre for Research and Technology—Hellas, 57001 Thessaloniki, Greece)

Abstract

In 2020, residential sector loads reached 25% of the overall electrical consumption in Europe and it is foreseen to stabilise at 29% by 2050. However, this relatively small increase demands, among others, changes in the energy consuming behaviour of households. To achieve this, Demand Response (DR) has been identified as a promising tool for unlocking the hidden flexibility potential of residential consumption. In this work, a holistic incentive-based DR framework aiming towards load shifting is proposed for residential applications. The proposed framework is characterised by several innovative features, mainly the formulation of the optimisation problem, which models user satisfaction and the economic operation of a distributed household portfolio, the customised load forecasting algorithm, which employs an adjusted Gradient Boosting Tree methodology with enhanced feature extraction and, finally, a disaggregation tool, which considers electrical features and time of use information. The DR framework is first validated through simulation to assess the business potential and is then deployed experimentally in real houses in Northern Greece. Results demonstrate that a mean 1.48% relative profit can be achieved via only load shifting of a maximum of three residential appliances, while the experimental application proves the effectiveness of the proposed algorithms in successfully managing the load curves of real houses with several residents. Correlations between market prices and the success of incentive-based load shifting DR programs show how wholesale pricing should be adjusted to ensure the viability of such DR schemes.

Suggested Citation

  • Angelina D. Bintoudi & Napoleon Bezas & Lampros Zyglakis & Georgios Isaioglou & Christos Timplalexis & Paschalis Gkaidatzis & Athanasios Tryferidis & Dimosthenis Ioannidis & Dimitrios Tzovaras, 2021. "Incentive-Based Demand Response Framework for Residential Applications: Design and Real-Life Demonstration," Energies, MDPI, vol. 14(14), pages 1-20, July.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:14:p:4315-:d:596297
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/14/4315/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/14/4315/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jordehi, A. Rezaee, 2019. "Optimisation of demand response in electric power systems, a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 308-319.
    2. Dusonchet, L. & Favuzza, S. & Massaro, F. & Telaretti, E. & Zizzo, G., 2019. "Technological and legislative status point of stationary energy storages in the EU," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 158-167.
    3. Haider, Haider Tarish & See, Ong Hang & Elmenreich, Wilfried, 2016. "A review of residential demand response of smart grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 166-178.
    4. Wang, Yong & Li, Lin, 2013. "Time-of-use based electricity demand response for sustainable manufacturing systems," Energy, Elsevier, vol. 63(C), pages 233-244.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vasileios M. Laitsos & Dimitrios Bargiotas & Aspassia Daskalopulu & Athanasios Ioannis Arvanitidis & Lefteri H. Tsoukalas, 2021. "An Incentive-Based Implementation of Demand Side Management in Power Systems," Energies, MDPI, vol. 14(23), pages 1-24, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amit Shewale & Anil Mokhade & Nitesh Funde & Neeraj Dhanraj Bokde, 2022. "A Survey of Efficient Demand-Side Management Techniques for the Residential Appliance Scheduling Problem in Smart Homes," Energies, MDPI, vol. 15(8), pages 1-34, April.
    2. Bhagya Nathali Silva & Murad Khan & Kijun Han, 2020. "Futuristic Sustainable Energy Management in Smart Environments: A Review of Peak Load Shaving and Demand Response Strategies, Challenges, and Opportunities," Sustainability, MDPI, vol. 12(14), pages 1-23, July.
    3. Jordehi, A. Rezaee, 2019. "Optimisation of demand response in electric power systems, a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 308-319.
    4. Meyabadi, A. Fattahi & Deihimi, M.H., 2017. "A review of demand-side management: Reconsidering theoretical framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 367-379.
    5. Andrew Blohm & Jaden Crawford & Steven A. Gabriel, 2021. "Demand Response as a Real-Time, Physical Hedge for Retail Electricity Providers: The Electric Reliability Council of Texas Market Case Study," Energies, MDPI, vol. 14(4), pages 1-16, February.
    6. Antonopoulos, Ioannis & Robu, Valentin & Couraud, Benoit & Kirli, Desen & Norbu, Sonam & Kiprakis, Aristides & Flynn, David & Elizondo-Gonzalez, Sergio & Wattam, Steve, 2020. "Artificial intelligence and machine learning approaches to energy demand-side response: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    7. Dranka, Géremi Gilson & Ferreira, Paula, 2019. "Review and assessment of the different categories of demand response potentials," Energy, Elsevier, vol. 179(C), pages 280-294.
    8. Madia Safdar & Ghulam Amjad Hussain & Matti Lehtonen, 2019. "Costs of Demand Response from Residential Customers’ Perspective," Energies, MDPI, vol. 12(9), pages 1-16, April.
    9. Haider, Haider Tarish & See, Ong Hang & Elmenreich, Wilfried, 2016. "Residential demand response scheme based on adaptive consumption level pricing," Energy, Elsevier, vol. 113(C), pages 301-308.
    10. Mohseni, Soheil & Brent, Alan C. & Kelly, Scott & Browne, Will N. & Burmester, Daniel, 2021. "Strategic design optimisation of multi-energy-storage-technology micro-grids considering a two-stage game-theoretic market for demand response aggregation," Applied Energy, Elsevier, vol. 287(C).
    11. da Fonseca, André L.A. & Chvatal, Karin M.S. & Fernandes, Ricardo A.S., 2021. "Thermal comfort maintenance in demand response programs: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    12. Bo wang & Nana Deng & Wenhui Zhao & Zhaohua Wang, 2022. "Residential power demand side management optimization based on fine-grained mixed frequency data," Annals of Operations Research, Springer, vol. 316(1), pages 603-622, September.
    13. Iolanda Saviuc & Herbert Peremans & Steven Van Passel & Kevin Milis, 2019. "Economic Performance of Using Batteries in European Residential Microgrids under the Net-Metering Scheme," Energies, MDPI, vol. 12(1), pages 1-28, January.
    14. McPherson, Madeleine & Stoll, Brady, 2020. "Demand response for variable renewable energy integration: A proposed approach and its impacts," Energy, Elsevier, vol. 197(C).
    15. Hu, Maomao & Xiao, Fu & Wang, Lingshi, 2017. "Investigation of demand response potentials of residential air conditioners in smart grids using grey-box room thermal model," Applied Energy, Elsevier, vol. 207(C), pages 324-335.
    16. Vallianos, Charalampos & Candanedo, José & Athienitis, Andreas, 2023. "Application of a large smart thermostat dataset for model calibration and Model Predictive Control implementation in the residential sector," Energy, Elsevier, vol. 278(PA).
    17. Fredrik Skaug Fadnes & Reyhaneh Banihabib & Mohsen Assadi, 2023. "Using Artificial Neural Networks to Gather Intelligence on a Fully Operational Heat Pump System in an Existing Building Cluster," Energies, MDPI, vol. 16(9), pages 1-33, May.
    18. Mousavi, Navid & Kothapalli, Ganesh & Habibi, Daryoush & Das, Choton K. & Baniasadi, Ali, 2020. "A novel photovoltaic-pumped hydro storage microgrid applicable to rural areas," Applied Energy, Elsevier, vol. 262(C).
    19. Reza Fachrizal & Joakim Munkhammar, 2020. "Improved Photovoltaic Self-Consumption in Residential Buildings with Distributed and Centralized Smart Charging of Electric Vehicles," Energies, MDPI, vol. 13(5), pages 1-19, March.
    20. Sun, Zeyi & Li, Lin & Bego, Andres & Dababneh, Fadwa, 2015. "Customer-side electricity load management for sustainable manufacturing systems utilizing combined heat and power generation system," International Journal of Production Economics, Elsevier, vol. 165(C), pages 112-119.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:14:p:4315-:d:596297. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.