IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i12p3662-d578139.html
   My bibliography  Save this article

Characteristics of Mineralogy, Lithofacies of Fine-Grained Sediments and Their Relationship with Sedimentary Environment: Example from the Upper Permian Longtan Formation in the Sichuan Basin

Author

Listed:
  • Hongzhi Yang

    (PetroChina Southwest Oil & Gasfield Company, Chengdu 610051, China)

  • Liangbiao Lin

    (State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology, Chengdu 610059, China
    Institute of Sedimentary Geology, Chengdu University of Technology, Chengdu 610059, China)

  • Liqing Chen

    (PetroChina Southwest Oil & Gasfield Company, Chengdu 610051, China)

  • Yu Yu

    (State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology, Chengdu 610059, China)

  • Du Li

    (PetroChina Southwest Oil & Gasfield Company, Chengdu 610051, China)

  • Jingchun Tian

    (Institute of Sedimentary Geology, Chengdu University of Technology, Chengdu 610059, China)

  • Wen Zhou

    (State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology, Chengdu 610059, China
    College of Energy, Chengdu University of Technology, Chengdu 610059, China)

  • Jianhua He

    (State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology, Chengdu 610059, China
    College of Energy, Chengdu University of Technology, Chengdu 610059, China)

Abstract

The Longtan Formation of the Upper Permian in the Sichuan Basin has become a significant target for shale gas exploration in recent years. Multiple methods, including outcrop observations, thin sections, total organic matter content, X-ray diffraction and scanning electron microscopy were used to investigate the mineralogy, shale lithofacies assemblages and their relationships with the deposition environment. The mineral composition of the Longtan Formation has strong mineral heterogeneity. The TOC values of the Longtan Formation have a wide distribution range from 0.07% to 74.67% with an average value of 5.73%. Four types of shale lithofacies assemblages of the Longtan Formation could be distinguished, as clayey mudstone (CLS), carbonaceous shale (CAS), siliceous shale (SS) and mixed shale (MS) on the basis of mineral compositions. The TOC values of various types of shale lithofacies assemblages in the Longtan Formation varied widely. The shore swamp of the Longtan Formation is most influenced by the terrestrial input and mainly develops CLS and MS. The tidal flat is influenced by the terrestrial input and can also deposit carbonate minerals, developing CLS, CAS and MS. The shallow water melanged accumulation shelf develops CAS and MS, dominated by clay and carbonate minerals. The deep water miscible shelf develops CLS and SS, whose mineral composition is similar to that of the shore swamp, but the quartz minerals are mainly formed by chemical and biological reactions, which are related to the Permian global chert event. The depositional environment of the Longtan Formation controls the shale mineral assemblage of the Longtan Formation and also influences the TOC content.

Suggested Citation

  • Hongzhi Yang & Liangbiao Lin & Liqing Chen & Yu Yu & Du Li & Jingchun Tian & Wen Zhou & Jianhua He, 2021. "Characteristics of Mineralogy, Lithofacies of Fine-Grained Sediments and Their Relationship with Sedimentary Environment: Example from the Upper Permian Longtan Formation in the Sichuan Basin," Energies, MDPI, vol. 14(12), pages 1-14, June.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:12:p:3662-:d:578139
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/12/3662/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/12/3662/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jianhua He & Hucheng Deng & Ruolong Ma & Ruyue Wang & Yuanyuan Wang & Ang Li, 2020. "Reservoir Characteristics of the Lower Jurassic Lacustrine Shale in the Eastern Sichuan Basin and Its Effect on Gas Properties: An Integrated Approach," Energies, MDPI, vol. 13(17), pages 1-16, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Reza Rezaee, 2022. "Editorial on Special Issues of Development of Unconventional Reservoirs," Energies, MDPI, vol. 15(7), pages 1-9, April.
    2. Haishui Han & Xinglong Chen & Zemin Ji & Junshi Li & Weifeng Lv & Qun Zhang & Ming Gao & Hao Kang, 2022. "Experimental Characterization of Oil/Gas Interface Self-Adjustment in CO 2 -Assisted Gravity Drainage for Reverse Rhythm Reservoir," Energies, MDPI, vol. 15(16), pages 1-16, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Reza Rezaee, 2022. "Editorial on Special Issues of Development of Unconventional Reservoirs," Energies, MDPI, vol. 15(7), pages 1-9, April.
    2. Golam Muktadir & Moh’d Amro & Nicolai Kummer & Carsten Freese & Khizar Abid, 2021. "Application of X-ray Diffraction (XRD) and Rock–Eval Analysis for the Evaluation of Middle Eastern Petroleum Source Rock," Energies, MDPI, vol. 14(20), pages 1-16, October.
    3. Yong Hu & Jiong Wei & Tao Li & Weiwei Zhu & Wenbo Gong & Dong Hui & Moran Wang, 2022. "Numerical Simulation of Fluid Flow in Carbonate Rocks Based on Digital Rock Technology," Energies, MDPI, vol. 15(10), pages 1-26, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:12:p:3662-:d:578139. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.