IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i12p3658-d578006.html
   My bibliography  Save this article

How Can Floor Covering Influence Buildings’ Demand Flexibility?

Author

Listed:
  • Hyeunguk Ahn

    (Lawrence Berkeley National Laboratory, Building Technology and Urban Systems Division, Berkeley, CA 94720, USA)

  • Jingjing Liu

    (Lawrence Berkeley National Laboratory, Building Technology and Urban Systems Division, Berkeley, CA 94720, USA)

  • Donghun Kim

    (Lawrence Berkeley National Laboratory, Building Technology and Urban Systems Division, Berkeley, CA 94720, USA)

  • Rongxin Yin

    (Lawrence Berkeley National Laboratory, Building Technology and Urban Systems Division, Berkeley, CA 94720, USA)

  • Tianzhen Hong

    (Lawrence Berkeley National Laboratory, Building Technology and Urban Systems Division, Berkeley, CA 94720, USA)

  • Mary Ann Piette

    (Lawrence Berkeley National Laboratory, Building Technology and Urban Systems Division, Berkeley, CA 94720, USA)

Abstract

Although the thermal mass of floors in buildings has been demonstrated to help shift cooling load, there is still a lack of information about how floor covering can influence the floor’s load shifting capability and buildings’ demand flexibility. To fill this gap, we estimated demand flexibility based on the daily peak cooling load reduction for different floor configurations and regions, using EnergyPlus simulations. As a demand response strategy, we used precooling and global temperature adjustment. The result demonstrated an adverse impact of floor covering on the building’s demand flexibility. Specifically, under the same demand response strategy, the daily peak cooling load reductions were up to 20–34% for a concrete floor whereas they were only 17–29% for a carpet-covered concrete floor. This is because floor covering hinders convective coupling between the concrete floor surface and the zone air and reduces radiative heat transfer between the concrete floor surface and the surrounding environment. In hot climates such as Phoenix, floor covering almost negated the concrete floor’s load shifting capability and yielded low demand flexibility as a wood floor, representing low thermal mass. Sensitivity analyses showed that floor covering’s effects can be more profound with a larger carpet-covered area, a greater temperature adjustment depth, or a higher radiant heat gain. With this effect ignored for a given building, its demand flexibility would be overestimated, which could prevent grid operators from obtaining sufficient demand flexibility to maintain a grid. Our findings also imply that for more efficient grid-interactive buildings, a traditional standard for floor design could be modified with increasing renewable penetration.

Suggested Citation

  • Hyeunguk Ahn & Jingjing Liu & Donghun Kim & Rongxin Yin & Tianzhen Hong & Mary Ann Piette, 2021. "How Can Floor Covering Influence Buildings’ Demand Flexibility?," Energies, MDPI, vol. 14(12), pages 1-17, June.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:12:p:3658-:d:578006
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/12/3658/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/12/3658/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Aste, Niccolò & Leonforte, Fabrizio & Manfren, Massimiliano & Mazzon, Manlio, 2015. "Thermal inertia and energy efficiency – Parametric simulation assessment on a calibrated case study," Applied Energy, Elsevier, vol. 145(C), pages 111-123.
    2. Chen, Yongbao & Chen, Zhe & Xu, Peng & Li, Weilin & Sha, Huajing & Yang, Zhiwei & Li, Guowen & Hu, Chonghe, 2019. "Quantification of electricity flexibility in demand response: Office building case study," Energy, Elsevier, vol. 188(C).
    3. Baldi, Simone & Korkas, Christos D. & Lv, Maolong & Kosmatopoulos, Elias B., 2018. "Automating occupant-building interaction via smart zoning of thermostatic loads: A switched self-tuning approach," Applied Energy, Elsevier, vol. 231(C), pages 1246-1258.
    4. Denholm, Paul & Hand, Maureen, 2011. "Grid flexibility and storage required to achieve very high penetration of variable renewable electricity," Energy Policy, Elsevier, vol. 39(3), pages 1817-1830, March.
    5. Yin, Rongxin & Kara, Emre C. & Li, Yaping & DeForest, Nicholas & Wang, Ke & Yong, Taiyou & Stadler, Michael, 2016. "Quantifying flexibility of commercial and residential loads for demand response using setpoint changes," Applied Energy, Elsevier, vol. 177(C), pages 149-164.
    6. Ahn, Hyeunguk & Freihaut, James D. & Rim, Donghyun, 2019. "Economic feasibility of combined cooling, heating, and power (CCHP) systems considering electricity standby tariffs," Energy, Elsevier, vol. 169(C), pages 420-432.
    7. Oliveira Panão, Marta J.N. & Mateus, Nuno M. & Carrilho da Graça, G., 2019. "Measured and modeled performance of internal mass as a thermal energy battery for energy flexible residential buildings," Applied Energy, Elsevier, vol. 239(C), pages 252-267.
    8. Korkas, Christos D. & Baldi, Simone & Michailidis, Iakovos & Kosmatopoulos, Elias B., 2016. "Occupancy-based demand response and thermal comfort optimization in microgrids with renewable energy sources and energy storage," Applied Energy, Elsevier, vol. 163(C), pages 93-104.
    9. Turner, W.J.N. & Walker, I.S. & Roux, J., 2015. "Peak load reductions: Electric load shifting with mechanical pre-cooling of residential buildings with low thermal mass," Energy, Elsevier, vol. 82(C), pages 1057-1067.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahn, Hyeunguk & Miller, William & Sheaffer, Paul & Tutterow, Vestal & Rapp, Vi, 2021. "Opportunities for installed combined heat and power (CHP) to increase grid flexibility in the U.S," Energy Policy, Elsevier, vol. 157(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tang, Hong & Wang, Shengwei & Li, Hangxin, 2021. "Flexibility categorization, sources, capabilities and technologies for energy-flexible and grid-responsive buildings: State-of-the-art and future perspective," Energy, Elsevier, vol. 219(C).
    2. Cruz, Marco R.M. & Fitiwi, Desta Z. & Santos, Sérgio F. & Catalão, João P.S., 2018. "A comprehensive survey of flexibility options for supporting the low-carbon energy future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 338-353.
    3. Luo, Na & Langevin, Jared & Chandra-Putra, Handi & Lee, Sang Hoon, 2022. "Quantifying the effect of multiple load flexibility strategies on commercial building electricity demand and services via surrogate modeling," Applied Energy, Elsevier, vol. 309(C).
    4. Chen, Yongbao & Chen, Zhe & Xu, Peng & Li, Weilin & Sha, Huajing & Yang, Zhiwei & Li, Guowen & Hu, Chonghe, 2019. "Quantification of electricity flexibility in demand response: Office building case study," Energy, Elsevier, vol. 188(C).
    5. Stinner, Sebastian & Huchtemann, Kristian & Müller, Dirk, 2016. "Quantifying the operational flexibility of building energy systems with thermal energy storages," Applied Energy, Elsevier, vol. 181(C), pages 140-154.
    6. Awan, Muhammad Bilal & Sun, Yongjun & Lin, Wenye & Ma, Zhenjun, 2023. "A framework to formulate and aggregate performance indicators to quantify building energy flexibility," Applied Energy, Elsevier, vol. 349(C).
    7. Romero Rodríguez, Laura & Sánchez Ramos, José & Álvarez Domínguez, Servando & Eicker, Ursula, 2018. "Contributions of heat pumps to demand response: A case study of a plus-energy dwelling," Applied Energy, Elsevier, vol. 214(C), pages 191-204.
    8. Wang, Huilong & Wang, Shengwei, 2021. "A hierarchical optimal control strategy for continuous demand response of building HVAC systems to provide frequency regulation service to smart power grids," Energy, Elsevier, vol. 230(C).
    9. Li, Han & Johra, Hicham & de Andrade Pereira, Flavia & Hong, Tianzhen & Le Dréau, Jérôme & Maturo, Anthony & Wei, Mingjun & Liu, Yapan & Saberi-Derakhtenjani, Ali & Nagy, Zoltan & Marszal-Pomianowska,, 2023. "Data-driven key performance indicators and datasets for building energy flexibility: A review and perspectives," Applied Energy, Elsevier, vol. 343(C).
    10. Ahn, Hyeunguk & Miller, William & Sheaffer, Paul & Tutterow, Vestal & Rapp, Vi, 2021. "Opportunities for installed combined heat and power (CHP) to increase grid flexibility in the U.S," Energy Policy, Elsevier, vol. 157(C).
    11. Chu, Wenfeng & Zhang, Yu & Wang, Donglin & He, Wei & Zhang, Sheng & Hu, Zhongting & Zhou, Jinzhi, 2023. "Capacity determination of renewable energy systems, electricity storage, and heat storage in grid-interactive buildings," Energy, Elsevier, vol. 285(C).
    12. Zhu, Jie & Niu, Jide & Tian, Zhe & Zhou, Ruoyu & Ye, Chuang, 2022. "Rapid quantification of demand response potential of building HAVC system via data-driven model," Applied Energy, Elsevier, vol. 325(C).
    13. Tang, Hong & Wang, Shengwei, 2021. "Energy flexibility quantification of grid-responsive buildings: Energy flexibility index and assessment of their effectiveness for applications," Energy, Elsevier, vol. 221(C).
    14. Monika Hall & Achim Geissler, 2021. "Comparison of Flexibility Factors and Introduction of A Flexibility Classification Using Advanced Heat Pump Control," Energies, MDPI, vol. 14(24), pages 1-19, December.
    15. Hu, Maomao & Xiao, Fu & Wang, Shengwei, 2021. "Neighborhood-level coordination and negotiation techniques for managing demand-side flexibility in residential microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    16. Favero, Matteo & Kloppenborg Møller, Jan & Calì, Davide & Carlucci, Salvatore, 2022. "Human-in-the-loop methods for occupant-centric building design and operation," Applied Energy, Elsevier, vol. 325(C).
    17. Tang, Hong & Wang, Shengwei, 2023. "Game-theoretic optimization of demand-side flexibility engagement considering the perspectives of different stakeholders and multiple flexibility services," Applied Energy, Elsevier, vol. 332(C).
    18. Fu, Yangyang & O'Neill, Zheng & Wen, Jin & Pertzborn, Amanda & Bushby, Steven T., 2022. "Utilizing commercial heating, ventilating, and air conditioning systems to provide grid services: A review," Applied Energy, Elsevier, vol. 307(C).
    19. Chen, Yongbao & Xu, Peng & Chen, Zhe & Wang, Hongxin & Sha, Huajing & Ji, Ying & Zhang, Yongming & Dou, Qiang & Wang, Sheng, 2020. "Experimental investigation of demand response potential of buildings: Combined passive thermal mass and active storage," Applied Energy, Elsevier, vol. 280(C).
    20. Alexander Brem & Dominic T. J. O’Sullivan & Ken Bruton, 2021. "Advancing the Industrial Sectors Participation in Demand Response within National Electricity Grids," Energies, MDPI, vol. 14(24), pages 1-26, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:12:p:3658-:d:578006. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.