IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i12p3569-d575610.html
   My bibliography  Save this article

Community Energy Groups: Can They Shield Consumers from the Risks of Using Blockchain for Peer-to-Peer Energy Trading?

Author

Listed:
  • Alexandra Schneiders

    (Energy Institute, University College London (UCL), 14 Upper Woburn Place, London WC1H 0NN, UK)

  • David Shipworth

    (Energy Institute, University College London (UCL), 14 Upper Woburn Place, London WC1H 0NN, UK)

Abstract

Peer-to-peer (P2P) energy trading is emerging as a new mechanism for settling the exchange of energy between renewable energy generators and consumers. P2P provides a mechanism for local balancing when it is facilitated through distributed ledgers (‘blockchains’). Energy communities across Europe have uncovered the potential of this technology and are currently running pilots to test its applicability in P2P energy trading. The aim of this paper is to assess, using legal literature and legislation, whether the legal forms available to energy communities in the United Kingdom (UK) can help resolve some of the uncertainties around the individual use of blockchain for P2P energy trading. This includes the legal recognition of ‘prosumers’, the protection of their personal data, as well as the validity of ‘smart contracts’ programmed to trade energy on the blockchain network. The analysis has shown that legal entities, such as Limited Liability Partnerships and Co-operative Societies, can play a crucial role in providing the necessary framework to protect consumers engaging in these transactions. This is particularly the case for co-operatives, given that they can hold members liable for not respecting the rules set out in their (compulsory) governing document. These findings are relevant to other European countries, where the energy co-operative model is also used.

Suggested Citation

  • Alexandra Schneiders & David Shipworth, 2021. "Community Energy Groups: Can They Shield Consumers from the Risks of Using Blockchain for Peer-to-Peer Energy Trading?," Energies, MDPI, vol. 14(12), pages 1-15, June.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:12:p:3569-:d:575610
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/12/3569/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/12/3569/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Oecd, 2016. "Protecting Consumers In Peer Platform Markets: Exploring The Issues," OECD Digital Economy Papers 253, OECD Publishing.
    2. Fanone, Enzo & Gamba, Andrea & Prokopczuk, Marcel, 2013. "The case of negative day-ahead electricity prices," Energy Economics, Elsevier, vol. 35(C), pages 22-34.
    3. Zahedi, A., 2011. "Maximizing solar PV energy penetration using energy storage technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 866-870, January.
    4. Andoni, Merlinda & Robu, Valentin & Flynn, David & Abram, Simone & Geach, Dale & Jenkins, David & McCallum, Peter & Peacock, Andrew, 2019. "Blockchain technology in the energy sector: A systematic review of challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 143-174.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Karim L. Anaya & Michael G. Pollitt, 2021. "How to Procure Flexibility Services within the Electricity Distribution System: Lessons from an International Review of Innovation Projects," Energies, MDPI, vol. 14(15), pages 1-26, July.
    2. Lynne L. Kiesling & Leonardo Meeus & Michael G. Pollitt, 2021. "Special Issue “Innovation, Policy, and Regulation in Electricity Markets”," Energies, MDPI, vol. 14(19), pages 1-4, September.
    3. Siripha Junlakarn & Phimsupha Kokchang & Kulyos Audomvongseree, 2022. "Drivers and Challenges of Peer-to-Peer Energy Trading Development in Thailand," Energies, MDPI, vol. 15(3), pages 1-25, February.
    4. Roth, Tamara & Utz, Manuel & Baumgarte, Felix & Rieger, Alexander & Sedlmeir, Johannes & Strüker, Jens, 2022. "Electricity powered by blockchain: A review with a European perspective," Applied Energy, Elsevier, vol. 325(C).
    5. Manuel Casquiço & Bruno Mataloto & Joao C. Ferreira & Vitor Monteiro & Joao L. Afonso & Jose A. Afonso, 2021. "Blockchain and Internet of Things for Electrical Energy Decentralization: A Review and System Architecture," Energies, MDPI, vol. 14(23), pages 1-26, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael J. Fell & Alexandra Schneiders & David Shipworth, 2019. "Consumer Demand for Blockchain-Enabled Peer-to-Peer Electricity Trading in the United Kingdom: An Online Survey Experiment," Energies, MDPI, vol. 12(20), pages 1-25, October.
    2. Karim L. Anaya & Michael G. Pollitt, 2021. "How to Procure Flexibility Services within the Electricity Distribution System: Lessons from an International Review of Innovation Projects," Energies, MDPI, vol. 14(15), pages 1-26, July.
    3. Afanasyev, Dmitriy O. & Fedorova, Elena A. & Popov, Viktor U., 2015. "Fine structure of the price–demand relationship in the electricity market: Multi-scale correlation analysis," Energy Economics, Elsevier, vol. 51(C), pages 215-226.
    4. Boyu Liu & Xiameng Si & Haiyan Kang, 2022. "A Literature Review of Blockchain-Based Applications in Supply Chain," Sustainability, MDPI, vol. 14(22), pages 1-24, November.
    5. Nowotarski, Jakub & Tomczyk, Jakub & Weron, Rafał, 2013. "Robust estimation and forecasting of the long-term seasonal component of electricity spot prices," Energy Economics, Elsevier, vol. 39(C), pages 13-27.
    6. Florian Ziel & Rick Steinert & Sven Husmann, 2014. "Efficient Modeling and Forecasting of the Electricity Spot Price," Papers 1402.7027, arXiv.org, revised Oct 2014.
    7. Matteo Vaccargiu & Andrea Pinna & Roberto Tonelli & Luisanna Cocco, 2023. "Blockchain in the Energy Sector for SDG Achievement," Sustainability, MDPI, vol. 15(20), pages 1-23, October.
    8. Zhou, Yuekuan & Lund, Peter D., 2023. "Peer-to-peer energy sharing and trading of renewable energy in smart communities ─ trading pricing models, decision-making and agent-based collaboration," Renewable Energy, Elsevier, vol. 207(C), pages 177-193.
    9. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    10. Kruyt, Bert & Lehning, Michael & Kahl, Annelen, 2017. "Potential contributions of wind power to a stable and highly renewable Swiss power supply," Applied Energy, Elsevier, vol. 192(C), pages 1-11.
    11. Razavi, Seyed-Ehsan & Rahimi, Ehsan & Javadi, Mohammad Sadegh & Nezhad, Ali Esmaeel & Lotfi, Mohamed & Shafie-khah, Miadreza & Catalão, João P.S., 2019. "Impact of distributed generation on protection and voltage regulation of distribution systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 157-167.
    12. Afanasyev, Dmitriy O. & Fedorova, Elena A., 2019. "On the impact of outlier filtering on the electricity price forecasting accuracy," Applied Energy, Elsevier, vol. 236(C), pages 196-210.
    13. Schinckus, Christophe, 2022. "A Nuanced perspective on blockchain technology and healthcare," Technology in Society, Elsevier, vol. 71(C).
    14. A. J. Jin & C. Li & J. Su & J. Tan, 2022. "Fundamental Studies of Smart Distributed Energy Resources along with Energy Blockchain," Energies, MDPI, vol. 15(21), pages 1-12, October.
    15. Panagiota Xanthopoulou, 2022. "Blockchain and the digital transformation of the public sector: The Greek experience," Technium Social Sciences Journal, Technium Science, vol. 32(1), pages 558-570, June.
    16. Mahmoona Khalil & Kausar Fiaz Khawaja & Muddassar Sarfraz, 2022. "The adoption of blockchain technology in the financial sector during the era of fourth industrial revolution: a moderated mediated model," Quality & Quantity: International Journal of Methodology, Springer, vol. 56(4), pages 2435-2452, August.
    17. Gonzalez, Jhonny & Moriarty, John & Palczewski, Jan, 2017. "Bayesian calibration and number of jump components in electricity spot price models," Energy Economics, Elsevier, vol. 65(C), pages 375-388.
    18. Peña, Juan Ignacio & Rodríguez, Rosa & Mayoral, Silvia, 2020. "Tail risk of electricity futures," Energy Economics, Elsevier, vol. 91(C).
    19. Umut Ugurlu & Ilkay Oksuz & Oktay Tas, 2018. "Electricity Price Forecasting Using Recurrent Neural Networks," Energies, MDPI, vol. 11(5), pages 1-23, May.
    20. Felix Garcia-Torres & Ascension Zafra-Cabeza & Carlos Silva & Stephane Grieu & Tejaswinee Darure & Ana Estanqueiro, 2021. "Model Predictive Control for Microgrid Functionalities: Review and Future Challenges," Energies, MDPI, vol. 14(5), pages 1-26, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:12:p:3569-:d:575610. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.