IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i12p3434-d572835.html
   My bibliography  Save this article

Biogas Production from Excess Sludge Oxidized with Peracetic Acid (PAA)

Author

Listed:
  • Iwona Zawieja

    (Faculty of Infrastructure and Environment, Czestochowa University of Technology, 42-200 Czestochowa, Poland)

  • Małgorzata Worwąg

    (Faculty of Infrastructure and Environment, Czestochowa University of Technology, 42-200 Czestochowa, Poland)

Abstract

Human functioning related to living and economic activity involves generating an increasing amount of sewage and sludge, which needs to be subjected to advanced processes of treatment, neutralization, and management. The deterioration in the susceptibility of excess sludge to biochemical decomposition observed under anaerobic conditions leads to the development and application of highly effective methods of wastewater treatment based on the removal of biogenic compounds using activated sludge, with a high degree of sludge thickening obtained in mechanical facilities. The concentration of volatile fatty acids, being an important intermediate product of anaerobic stabilization, directly determines biogas production efficiency. This study aimed to determine the effect of chemical disintegration with peracetic acid on biogas production efficiency using methane fermentation of pretreated sludge. Intensification of the hydrolysis phase is an important determinant of the efficiency of biochemical sludge decomposition under anaerobic conditions. The association of excess sludge oxidation, initiated by peracetic acid with biological hydrolysis, which is the first phase of methane fermentation, led to an increase in sludge digestion degree and biogas production efficiency. The compound of STERIDIAL W-10, which is an aqueous solution of 10% peracetic acid, 10% acetic acid, and 8% hydrogen peroxide, was used. The disintegration of excess sludge with a reactant dose of 3.0 mL of STERIDIAL W-10/L yielded a specific biogas production of 0.52 L/g VSS and a 74% degree of sludge digestion.

Suggested Citation

  • Iwona Zawieja & Małgorzata Worwąg, 2021. "Biogas Production from Excess Sludge Oxidized with Peracetic Acid (PAA)," Energies, MDPI, vol. 14(12), pages 1-17, June.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:12:p:3434-:d:572835
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/12/3434/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/12/3434/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhou, Aijuan & Zhang, Jiaguang & Varrone, Cristiano & Wen, Kaili & Wang, Guoying & Liu, Wenzong & Wang, Aijie & Yue, Xiuping, 2017. "Process assessment associated to microbial community response provides insight on possible mechanism of waste activated sludge digestion under typical chemical pretreatments," Energy, Elsevier, vol. 137(C), pages 457-467.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marcin Dębowski & Marcin Zieliński, 2022. "Wastewater Treatment and Biogas Production: Innovative Technologies, Research and Development Directions," Energies, MDPI, vol. 15(6), pages 1-4, March.
    2. Mohd Imran Siddiqui & Izharul Haq Farooqi & Farrukh Basheer & Hasan Rameez & Mohamed Hasnain Isa, 2023. "Pretreatment of Slaughterhouse Effluent Treatment Plant Sludge Using Electro-Fenton Process for Anaerobic Digestion," Sustainability, MDPI, vol. 15(4), pages 1-19, February.
    3. Beata Bień & Jurand D. Bień, 2022. "Analysis of Reject Water Formed in the Mechanical Dewatering Process of Digested Sludge Conditioned by Physical and Chemical Methods," Energies, MDPI, vol. 15(5), pages 1-14, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:12:p:3434-:d:572835. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.