IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i11p3349-d570369.html
   My bibliography  Save this article

Community-Based Business on Small Hydropower (SHP) in Rural Japan: A Case Study on a Community Owned SHP Model of Ohito Agricultural Cooperative

Author

Listed:
  • Zafar Alam

    (Nakayama Iron Works Co. Ltd., Saga 843-0001, Japan)

  • Yoshinobu Watanabe

    (Nakayama Iron Works Co. Ltd., Saga 843-0001, Japan)

  • Shazia Hanif

    (Department of Agricultural Engineering, Muhammad Nawaz Sharif University of Agriculture, Multan 66000, Pakistan)

  • Tatsuro Sato

    (Faculty of Architecture and Civil Engineering, Kyushu Sangyo University, Fukuoka 813-8503, Japan)

  • Tokihiko Fujimoto

    (School of Political Science and Economics, Meiji University, Tokyo 101-8301, Japan)

Abstract

Energy is the prerequisite for social and economic development of a community and country. In Japan, national government is promoting small hydropower (SHP) through a renewable energy policy by providing a high FIT price of 34 yen (≒0.32 US$/kWh) on energy generated from an SHP of less than 200 kW. Until now, the energy generation was controlled by national government agencies, but now independent power generation businesses are growing at the local community level in rural Japan. For the future growth of SHP, it is necessary to make electricity generation at the local community level. Therefore, these local communities will install and manage their renewable electricity by themselves. It will help to make the community self-sustainable and independent from the national government, and at the same time, it will also lead them to achieve the Sustainable Developments Goals (SDGs) target from community-based action. This paper aimed to discuss an SHP development business model in which local community will become the business owner of the SHP. It means “of the community, by the community and for the community”. The community identifies their renewable energy potential and needs, they borrow money from the financial organization or banks, install the power plant and do necessary maintenance and management by themselves. The revenue earned by selling electricity is used to repay the loan, and the rest is used for community development directly (such as local roads construction, agriculture land improvements, community hall maintenance, waterways maintenance, welfare, etc.). This paper also discussed a community-based 50 kW SHP installed in Miyazaki prefecture of Japan as a case study. This SHP is one of the best examples of a community ownership model (Community-based business model). A detailed explanation from planning to investment has been discussed. The local community is getting approximately 112,000 USD per year by selling the electricity, and 162-ton CO 2 is estimated to decrease yearly, which will support the achievement of SDGs. Finally, installing this kind of SHP in remote areas will provide managerial skills to the local community directly, plant operation knowledge, and education to local students. Local communities learn the problem-solving skills, which lead them to solve the local problem on a community level by themselves.

Suggested Citation

  • Zafar Alam & Yoshinobu Watanabe & Shazia Hanif & Tatsuro Sato & Tokihiko Fujimoto, 2021. "Community-Based Business on Small Hydropower (SHP) in Rural Japan: A Case Study on a Community Owned SHP Model of Ohito Agricultural Cooperative," Energies, MDPI, vol. 14(11), pages 1-14, June.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:11:p:3349-:d:570369
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/11/3349/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/11/3349/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kosnik, Lea, 2010. "The potential for small scale hydropower development in the US," Energy Policy, Elsevier, vol. 38(10), pages 5512-5519, October.
    2. Schramm, Michael P. & Bevelhimer, Mark S. & DeRolph, Chris R., 2016. "A synthesis of environmental and recreational mitigation requirements at hydropower projects in the United States," Environmental Science & Policy, Elsevier, vol. 61(C), pages 87-96.
    3. Hondo, Hiroki, 2005. "Life cycle GHG emission analysis of power generation systems: Japanese case," Energy, Elsevier, vol. 30(11), pages 2042-2056.
    4. Esmeralda Neri & Daniele Cespi & Leonardo Setti & Erica Gombi & Elena Bernardi & Ivano Vassura & Fabrizio Passarini, 2016. "Biomass Residues to Renewable Energy: A Life Cycle Perspective Applied at a Local Scale," Energies, MDPI, vol. 9(11), pages 1-15, November.
    5. Gonçalves da Silva, C., 2010. "Renewable energies: Choosing the best options," Energy, Elsevier, vol. 35(8), pages 3179-3193.
    6. Kong, Yigang & Wang, Jie & Kong, Zhigang & Song, Furong & Liu, Zhiqi & Wei, Congmei, 2015. "Small hydropower in China: The survey and sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 425-433.
    7. Megan Hansen & Randy T. Simmons & Ryan M. Yonk, 2016. "The Regulatory Noose: Logan City’s Adventures in Micro-Hydropower," Energies, MDPI, vol. 9(7), pages 1-16, June.
    8. Luis Miguel Fonseca & José Pedro Domingues & Alina Mihaela Dima, 2020. "Mapping the Sustainable Development Goals Relationships," Sustainability, MDPI, vol. 12(8), pages 1-15, April.
    9. Paish, Oliver, 2002. "Small hydro power: technology and current status," Renewable and Sustainable Energy Reviews, Elsevier, vol. 6(6), pages 537-556, December.
    10. Tokihiko Fujimoto & Kazuki Kagohashi, 2019. "Community-Led Micro-Hydropower Development and Landcare: A Case Study of Networking Activities of Local Residents and Farmers in the Gokase Township (Japan)," Energies, MDPI, vol. 12(6), pages 1-9, March.
    11. Botelho, Anabela & Ferreira, Paula & Lima, Fátima & Pinto, Lígia M. Costa & Sousa, Sara, 2017. "Assessment of the environmental impacts associated with hydropower," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 896-904.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. John Cimbala & Bryan Lewis, 2022. "Advancements in Hydropower Design and Operation for Present and Future Electrical Demand," Energies, MDPI, vol. 15(7), pages 1-2, March.
    2. Zafar Alam & Yoshinobu Watanabe & Shazia Hanif & Tatsuro Sato & Tokihiko Fujimoto, 2021. "Social Enterprise in Small Hydropower (SHP) Owned by a Limited Liability Partnership (LLP) between a Food Cooperative and a Social Venture Company; a Case Study of the 20 kW Shiraito (Step3) SHP in It," Energies, MDPI, vol. 14(20), pages 1-10, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adamantia Zoi Vougioukli & Eleni Didaskalou & Dimitrios Georgakellos, 2017. "Financial Appraisal of Small Hydro-Power Considering the Cradle-to-Grave Environmental Cost: A Case from Greece," Energies, MDPI, vol. 10(4), pages 1-20, March.
    2. Zafar Alam & Yoshinobu Watanabe & Shazia Hanif & Tatsuro Sato & Tokihiko Fujimoto, 2021. "Social Enterprise in Small Hydropower (SHP) Owned by a Limited Liability Partnership (LLP) between a Food Cooperative and a Social Venture Company; a Case Study of the 20 kW Shiraito (Step3) SHP in It," Energies, MDPI, vol. 14(20), pages 1-10, October.
    3. Zhang, Lixiao & Pang, Mingyue & Bahaj, AbuBakr S. & Yang, Yongchuan & Wang, Changbo, 2021. "Small hydropower development in China: Growing challenges and transition strategy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    4. Marianna Rotilio & Chiara Marchionni & Pierluigi De Berardinis, 2017. "The Small-Scale Hydropower Plants in Sites of Environmental Value: An Italian Case Study," Sustainability, MDPI, vol. 9(12), pages 1-15, November.
    5. Xu, Jiuping & Ni, Ting, 2017. "Integrated technological paradigm-based soft paths towards sustainable development of small hydropower," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 623-634.
    6. Kumar, Deepak & Katoch, S.S., 2015. "Sustainability suspense of small hydropower projects: A study from western Himalayan region of India," Renewable Energy, Elsevier, vol. 76(C), pages 220-233.
    7. Pang, Mingyue & Zhang, Lixiao & Bahaj, AbuBakr S. & Xu, Kaipeng & Hao, Yan & Wang, Changbo, 2018. "Small hydropower development in Tibet: Insight from a survey in Nagqu Prefecture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 3032-3040.
    8. Laghari, J.A. & Mokhlis, H. & Bakar, A.H.A. & Mohammad, Hasmaini, 2013. "A comprehensive overview of new designs in the hydraulic, electrical equipments and controllers of mini hydro power plants making it cost effective technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 279-293.
    9. Mahmud, M. A. Parvez & Huda, Nazmul & Farjana, Shahjadi Hisan & Lang, Candace, 2019. "A strategic impact assessment of hydropower plants in alpine and non-alpine areas of Europe," Applied Energy, Elsevier, vol. 250(C), pages 198-214.
    10. Song, Cuihong & Gardner, Kevin H. & Klein, Sharon J.W. & Souza, Simone Pereira & Mo, Weiwei, 2018. "Cradle-to-grave greenhouse gas emissions from dams in the United States of America," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 945-956.
    11. Zhang, Jin & Xu, Linyu & Li, Xiaojin, 2015. "Review on the externalities of hydropower: A comparison between large and small hydropower projects in Tibet based on the CO2 equivalent," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 176-185.
    12. Izadyar, Nima & Ong, Hwai Chyuan & Chong, W.T. & Leong, K.Y., 2016. "Resource assessment of the renewable energy potential for a remote area: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 908-923.
    13. Amponsah, Nana Yaw & Troldborg, Mads & Kington, Bethany & Aalders, Inge & Hough, Rupert Lloyd, 2014. "Greenhouse gas emissions from renewable energy sources: A review of lifecycle considerations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 461-475.
    14. Paudel, Shakun & Linton, Nick & Zanke, Ulrich C.E. & Saenger, Nicole, 2013. "Experimental investigation on the effect of channel width on flexible rubber blade water wheel performance," Renewable Energy, Elsevier, vol. 52(C), pages 1-7.
    15. Ptak, Thomas & Crootof, Arica & Harlan, Tyler & Kelly, Sarah, 2022. "Critically evaluating the purported global “boom” in small hydropower development through spatial and temporal analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    16. Pang, Mingyue & Zhang, Lixiao & Ulgiati, Sergio & Wang, Changbo, 2015. "Ecological impacts of small hydropower in China: Insights from an emergy analysis of a case plant," Energy Policy, Elsevier, vol. 76(C), pages 112-122.
    17. Oladosu, Gbadebo A. & Werble, Joseph & Tingen, William & Witt, Adam & Mobley, Miles & O'Connor, Patrick, 2021. "Costs of mitigating the environmental impacts of hydropower projects in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    18. Arvesen, Anders & Hertwich, Edgar G., 2012. "Assessing the life cycle environmental impacts of wind power: A review of present knowledge and research needs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5994-6006.
    19. Venus, Terese E. & Hinzmann, Mandy & Bakken, Tor Haakon & Gerdes, Holger & Godinho, Francisco Nunes & Hansen, Bendik & Pinheiro, António & Sauer, Johannes, 2020. "The public's perception of run-of-the-river hydropower across Europe," Energy Policy, Elsevier, vol. 140(C).
    20. Kan, Kan & Zhang, Qingying & Xu, Zhe & Zheng, Yuan & Gao, Qiang & Shen, Lian, 2022. "Energy loss mechanism due to tip leakage flow of axial flow pump as turbine under various operating conditions," Energy, Elsevier, vol. 255(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:11:p:3349-:d:570369. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.