IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i11p3073-d561924.html
   My bibliography  Save this article

Effect of Pole and Slot Combination on the AC Joule Loss of Outer-Rotor Permanent Magnet Synchronous Motors Using a High Fill Factor Machined Coil

Author

Listed:
  • Soo-Hwan Park

    (Department of Automotive Engineering, Hanyang University, Seoul 04763, Korea)

  • Eui-Chun Lee

    (Department of Automotive Engineering, Hanyang University, Seoul 04763, Korea
    Safety System R&D Group, Korea Institute of Industrial Technology, Daegu 42994, Korea)

  • Gi-Ju Lee

    (Safety System R&D Group, Korea Institute of Industrial Technology, Daegu 42994, Korea
    Department of Electrical Engineering, Kyungpook National University, Daegu 41566, Korea)

  • Soon-O. Kwon

    (Safety System R&D Group, Korea Institute of Industrial Technology, Daegu 42994, Korea)

  • Myung-Seop Lim

    (Department of Automotive Engineering, Hanyang University, Seoul 04763, Korea)

Abstract

This paper proposes a design guideline for selecting the pole and slot combination of an outer-rotor permanent magnet synchronous motor (PMSM) using a maximum slot occupation (MSO) coil. Because the MSO coil has a large conductor area, the AC Joule loss in the conductors may be increased at high frequencies. To ensure high-efficiency for the PMSM, it is necessary to reduce the loss. Thus, it is important to select the pole- and slot- combination that has the minimum AC Joule loss. The loss is caused by skin/proximity effects and variations in the slot leakage flux. The skin effect is due to the armature winding and the variation in the slot leakage flux is due to the field flux. A method for separating the AC Joule loss due to each component using the frozen permeability method is proposed. Based on the proposed method, the effect of each cause on the loss at various pole- and slot- combinations is analyzed in this study.

Suggested Citation

  • Soo-Hwan Park & Eui-Chun Lee & Gi-Ju Lee & Soon-O. Kwon & Myung-Seop Lim, 2021. "Effect of Pole and Slot Combination on the AC Joule Loss of Outer-Rotor Permanent Magnet Synchronous Motors Using a High Fill Factor Machined Coil," Energies, MDPI, vol. 14(11), pages 1-11, May.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:11:p:3073-:d:561924
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/11/3073/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/11/3073/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shumei Cui & Tianxu Zhao & Bochao Du & Yuan Cheng, 2020. "Multiphase PMSM with Asymmetric Windings for Electric Drive," Energies, MDPI, vol. 13(15), pages 1-16, July.
    2. Guoyu Chu & Rukmi Dutta & Alireza Pouramin & Muhammed Fazlur Rahman, 2020. "Analysis of Torque Ripple of a Spoke-Type Interior Permanent Magnet Machine," Energies, MDPI, vol. 13(11), pages 1-16, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hyungkwan Jang & Hyunwoo Kim & Huai-Cong Liu & Ho-Joon Lee & Ju Lee, 2021. "Investigation on the Torque Ripple Reduction Method of a Hybrid Electric Vehicle Motor," Energies, MDPI, vol. 14(5), pages 1-13, March.
    2. Zeyu Cheng & Zhi Cao & John T. Hwang & Chris Mi, 2023. "A Novel Single-Turn Permanent Magnet Synchronous Machine for Electric Aircraft," Energies, MDPI, vol. 16(3), pages 1-14, January.
    3. Zhimeng Rao & Wenjuan Zhang & Gongping Wu & Jian Zheng & Shoudao Huang, 2020. "Characteristic Analysis and Predictive Torque Control of the Modular Three-Phase PMSM for Low-Voltage High Power Application," Energies, MDPI, vol. 13(21), pages 1-20, October.
    4. Mitsuhide Sato & Keigo Takazawa & Manabu Horiuchi & Ryoken Masuda & Ryo Yoshida & Masami Nirei & Yinggang Bu & Tsutomu Mizuno, 2020. "Reducing Rotor Temperature Rise in Concentrated Winding Motor by Using Magnetic Powder Mixed Resin Ring," Energies, MDPI, vol. 13(24), pages 1-15, December.
    5. Ryszard Palka & Kamil Cierzniewski & Marcin Wardach & Pawel Prajzendanc, 2023. "Research on Innovative Hybrid Excited Synchronous Machine," Energies, MDPI, vol. 16(18), pages 1-14, September.
    6. Massimo Caruso & Antonino Oscar Di Tommaso & Giuseppe Lisciandrello & Rosa Anna Mastromauro & Rosario Miceli & Claudio Nevoloso & Ciro Spataro & Marco Trapanese, 2020. "A General and Accurate Measurement Procedure for the Detection of Power Losses Variations in Permanent Magnet Synchronous Motor Drives," Energies, MDPI, vol. 13(21), pages 1-19, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:11:p:3073-:d:561924. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.