IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i11p3062-d561686.html
   My bibliography  Save this article

Pool Boiling of Water on Surfaces with Open Microchannels

Author

Listed:
  • Robert Kaniowski

    (Faculty of Mechatronics and Mechanical Engineering, Kielce University of Technology, al. Tysiąclecia P.P. 7., 25-314 Kielce, Poland)

  • Robert Pastuszko

    (Faculty of Mechatronics and Mechanical Engineering, Kielce University of Technology, al. Tysiąclecia P.P. 7., 25-314 Kielce, Poland)

Abstract

Boiling, as the most efficient type of convective heat transfer, is an area of interest in many fields of industry and science. Many works have focused on improving the heat transfer efficiency of boiling by altering the physical and chemical properties of surfaces by using different technological processes in their fabrication. This paper presents experimental investigations into pool boiling on enhanced surfaces with open microchannels. The material of the fabricated surface was copper. Parallel microchannels made by machining were about 0.2, 0.3, and 0.4 mm wide, 0.2 to 0.5 mm deep, and spaced with a pitch equal to twice the width of the microchannel. The experiments were carried out in water at atmospheric pressure. The experimental results obtained showed an increase in the heat flux and the heat transfer coefficient for surfaces with microchannels. The maximum (critical) heat flux was 2188 kW/m 2 , and the heat transfer coefficient was 392 kW/m 2 K. An improvement in the maximum heat flux of more than 245% and 2.5–4.9 times higher heat transfer coefficient was obtained for the heat flux range of 992–2188 kW/m 2 compared to the smooth surface. Bubble formation and growth cycle in the microchannel were presented. Two static computational models were proposed to determine the bubble departure diameter.

Suggested Citation

  • Robert Kaniowski & Robert Pastuszko, 2021. "Pool Boiling of Water on Surfaces with Open Microchannels," Energies, MDPI, vol. 14(11), pages 1-21, May.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:11:p:3062-:d:561686
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/11/3062/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/11/3062/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Łukasz J. Orman & Norbert Radek & Jacek Pietraszek & Marcin Szczepaniak, 2020. "Analysis of Enhanced Pool Boiling Heat Transfer on Laser—Textured Surfaces," Energies, MDPI, vol. 13(11), pages 1-19, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Magdalena Piasecka, 2023. "Heat and Mass Transfer Issues in Mini-Gaps," Energies, MDPI, vol. 16(16), pages 1-6, August.
    2. Robert Kaniowski, 2023. "Pool Boiling of Novec-649 on Inclined Microchannel," Energies, MDPI, vol. 16(5), pages 1-17, March.
    3. Magdalena Piasecka & Kinga Strąk, 2021. "Characteristics of Refrigerant Boiling Heat Transfer in Rectangular Mini-Channels during Various Flow Orientations," Energies, MDPI, vol. 14(16), pages 1-30, August.
    4. Denis Kuznetsov & Aleksandr Pavlenko, 2022. "Heat Transfer during Nitrogen Boiling on Surfaces Modified by Microarc Oxidation," Energies, MDPI, vol. 15(16), pages 1-14, August.
    5. Robert Kaniowski & Robert Pastuszko, 2021. "Boiling of FC-72 on Surfaces with Open Copper Microchannel," Energies, MDPI, vol. 14(21), pages 1-18, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Magdalena Piasecka & Kinga Strąk, 2021. "Characteristics of Refrigerant Boiling Heat Transfer in Rectangular Mini-Channels during Various Flow Orientations," Energies, MDPI, vol. 14(16), pages 1-30, August.
    2. Hesam Moghadasi & Navid Malekian & Hamid Saffari & Amir Mirza Gheitaghy & Guo Qi Zhang, 2020. "Recent Advances in the Critical Heat Flux Amelioration of Pool Boiling Surfaces Using Metal Oxide Nanoparticle Deposition," Energies, MDPI, vol. 13(15), pages 1-49, August.
    3. Denis Kuznetsov & Aleksandr Pavlenko, 2022. "Heat Transfer during Nitrogen Boiling on Surfaces Modified by Microarc Oxidation," Energies, MDPI, vol. 15(16), pages 1-14, August.
    4. Robert Kaniowski, 2023. "Pool Boiling of Novec-649 on Inclined Microchannel," Energies, MDPI, vol. 16(5), pages 1-17, March.
    5. Robert Kaniowski & Robert Pastuszko, 2021. "Boiling of FC-72 on Surfaces with Open Copper Microchannel," Energies, MDPI, vol. 14(21), pages 1-18, November.
    6. Magdalena Piasecka & Sylwia Hożejowska & Beata Maciejewska & Anna Pawińska, 2021. "Time-Dependent Heat Transfer Calculations with Trefftz and Picard Methods for Flow Boiling in a Mini-Channel Heat Sink," Energies, MDPI, vol. 14(7), pages 1-24, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:11:p:3062-:d:561686. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.