IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i11p3051-d561394.html
   My bibliography  Save this article

Application of a New Semi-Automatic Algorithm for the Detection of Subsidence Areas in SAR Images on the Example of the Upper Silesian Coal Basin

Author

Listed:
  • Maciej Dwornik

    (Department of Geoinformatics and Applied Computer Science, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland)

  • Justyna Bała

    (Department of Geoinformatics and Applied Computer Science, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland)

  • Anna Franczyk

    (Department of Geoinformatics and Applied Computer Science, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland)

Abstract

The article presents a new method of automatic detection of subsidence troughs caused by underground coal mining. Land subsidence that results from mining leads to considerable damage to subsurface and surface infrastructure such as walls of buildings, road surfaces, and water relations in built-up areas. Within next 30 years, all coal mines are to be closed as part of the transformation of the mining industry in Poland. However, this is not going to solve the problem of subsidence in those areas. Thus, it is necessary to detect and constantly monitor such hazards. One of the techniques used for that purpose is DInSAR (differential interferometry synthetic aperture radar). It makes it possible to monitor land deformation over large areas with high accuracy and very good spatial and temporal resolution. Subsidence, particularly related to mining, usually manifests itself in interferograms in the form of elliptical interferometric fringes. An important issue here is partial or full automation of the subsidence detection process, as manual analysis is time-consuming and unreliable. Most of the proposed trough detection methods (i.e., Hough transform, circlet transform, circular Gabor filters, template recognition) focus on the shape of the troughs. They fail, however, when the interferometric fringes do not have distinct elliptical shapes or are very noisy. The method presented in this article is based on the analysis of the variability of the phase value in a micro-area of a relatively high entropy. The algorithm was tested for differential interferograms form the Upper Silesian Coal Basin (southern Poland). Due to mining, the studied area is particularly prone to various types of subsidence.

Suggested Citation

  • Maciej Dwornik & Justyna Bała & Anna Franczyk, 2021. "Application of a New Semi-Automatic Algorithm for the Detection of Subsidence Areas in SAR Images on the Example of the Upper Silesian Coal Basin," Energies, MDPI, vol. 14(11), pages 1-14, May.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:11:p:3051-:d:561394
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/11/3051/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/11/3051/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Anna Kopeć & Paweł Trybała & Dariusz Głąbicki & Anna Buczyńska & Karolina Owczarz & Natalia Bugajska & Patrycja Kozińska & Monika Chojwa & Agata Gattner, 2020. "Application of Remote Sensing, GIS and Machine Learning with Geographically Weighted Regression in Assessing the Impact of Hard Coal Mining on the Natural Environment," Sustainability, MDPI, vol. 12(22), pages 1-26, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shaokun He & Lei Gu & Jing Tian & Lele Deng & Jiabo Yin & Zhen Liao & Ziyue Zeng & Youjiang Shen & Yu Hui, 2021. "Machine Learning Improvement of Streamflow Simulation by Utilizing Remote Sensing Data and Potential Application in Guiding Reservoir Operation," Sustainability, MDPI, vol. 13(7), pages 1-15, March.
    2. Ming Li & Yueguan Yan & Huayang Dai & Zhaojiang Zhang, 2023. "Study on Rock and Surface Subsidence Laws of Super-High Water Material Backfilling and Mining Technology: A Case Study in Hengjian Coal Mine," Sustainability, MDPI, vol. 15(11), pages 1-22, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:11:p:3051-:d:561394. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.