IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2020i1p26-d466877.html
   My bibliography  Save this article

Investigation of Turbulence Modeling for Point-Absorber-Type Wave Energy Converters

Author

Listed:
  • Christian Windt

    (Centre for Ocean Energy Research, Maynooth University, Kildare W23 F2K8, Ireland
    Leichtweiß—Institute for Hydraulic Engineering and Water Resources, Technische Universität Braunschweig, 38106 Braunschweig, Germany)

  • Josh Davidson

    (Department of Fluid Mechanics, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, 1111 Budapest, Hungary)

  • John V. Ringwood

    (Centre for Ocean Energy Research, Maynooth University, Kildare W23 F2K8, Ireland)

Abstract

Reviewing the literature of CFD-based numerical wave tanks for wave energy applications, it can be observed that different flow conditions and different turbulence models are applied during numerical wave energy converter (WEC) experiments. No single turbulence model can be identified as an `industry standard’ for WEC modeling. The complexity of the flow field around a WEC, together with the strong dependency of turbulence effects on the shape, operational conditions, and external forces, hampers the formulation of such an `industry standard’. Furthermore, the conceptually different flow characteristics (i.e., oscillating, free surface flows), compared to the design cases of most turbulence models (i.e., continuous single-phase flow), can be identified as a source for the potential lack of accuracy of turbulence models for WEC applications. This communication performs a first step towards analyzing the accuracy and necessity of modeling turbulence effects, by means of turbulence models, within CFD-based NWTs for WEC applications. To that end, the influence of turbulence models and, in addition, the influence of the initial turbulence intensity is investigated based on different wave–structure interaction cases considering two separately validated WEC models. The results highlight the complexity of such a `turbulence analysis’ and the study suggests specific future work to get a better understanding of the model requirements for the flow field around WECs.

Suggested Citation

  • Christian Windt & Josh Davidson & John V. Ringwood, 2020. "Investigation of Turbulence Modeling for Point-Absorber-Type Wave Energy Converters," Energies, MDPI, vol. 14(1), pages 1-18, December.
  • Handle: RePEc:gam:jeners:v:14:y:2020:i:1:p:26-:d:466877
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/1/26/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/1/26/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vyzikas, Thomas & Deshoulières, Samy & Giroux, Olivier & Barton, Matthew & Greaves, Deborah, 2017. "Numerical study of fixed Oscillating Water Column with RANS-type two-phase CFD model," Renewable Energy, Elsevier, vol. 102(PB), pages 294-305.
    2. Brecht Devolder & Vasiliki Stratigaki & Peter Troch & Pieter Rauwoens, 2018. "CFD Simulations of Floating Point Absorber Wave Energy Converter Arrays Subjected to Regular Waves," Energies, MDPI, vol. 11(3), pages 1-23, March.
    3. Elhanafi, Ahmed & Fleming, Alan & Macfarlane, Gregor & Leong, Zhi, 2016. "Numerical energy balance analysis for an onshore oscillating water column–wave energy converter," Energy, Elsevier, vol. 116(P1), pages 539-557.
    4. Windt, Christian & Davidson, Josh & Ringwood, John V., 2018. "High-fidelity numerical modelling of ocean wave energy systems: A review of computational fluid dynamics-based numerical wave tanks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 610-630.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eirini Katsidoniotaki & Foivos Psarommatis & Malin Göteman, 2022. "Digital Twin for the Prediction of Extreme Loads on a Wave Energy Conversion System," Energies, MDPI, vol. 15(15), pages 1-24, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Ming & Ning, Dezhi, 2024. "A review of numerical methods for studying hydrodynamic performance of oscillating water column (OWC) devices," Renewable Energy, Elsevier, vol. 233(C).
    2. Opoku, F. & Uddin, M.N. & Atkinson, M., 2023. "A review of computational methods for studying oscillating water columns – the Navier-Stokes based equation approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 174(C).
    3. Çelik, Anıl & Altunkaynak, Abdüsselam, 2021. "An in depth experimental investigation into effects of incident wave characteristics front wall opening and PTO damping on the water column displacement and air differential pressure in an OWC chamber," Energy, Elsevier, vol. 230(C).
    4. Rezanejad, K. & Gadelho, J.F.M. & Guedes Soares, C., 2019. "Hydrodynamic analysis of an oscillating water column wave energy converter in the stepped bottom condition using CFD," Renewable Energy, Elsevier, vol. 135(C), pages 1241-1259.
    5. Oliveira, D. & Lopes de Almeida, J.P.P.G. & Santiago, A. & Rigueiro, C., 2022. "Development of a CFD-based numerical wave tank of a novel multipurpose wave energy converter," Renewable Energy, Elsevier, vol. 199(C), pages 226-245.
    6. Elhanafi, Ahmed & Kim, Chan Joo, 2018. "Experimental and numerical investigation on wave height and power take–off damping effects on the hydrodynamic performance of an offshore–stationary OWC wave energy converter," Renewable Energy, Elsevier, vol. 125(C), pages 518-528.
    7. Simonetti, I. & Cappietti, L. & Elsafti, H. & Oumeraci, H., 2017. "Optimization of the geometry and the turbine induced damping for fixed detached and asymmetric OWC devices: A numerical study," Energy, Elsevier, vol. 139(C), pages 1197-1209.
    8. Morten Bech Kramer & Jacob Andersen & Sarah Thomas & Flemming Buus Bendixen & Harry Bingham & Robert Read & Nikolaj Holk & Edward Ransley & Scott Brown & Yi-Hsiang Yu & Thanh Toan Tran & Josh Davidson, 2021. "Highly Accurate Experimental Heave Decay Tests with a Floating Sphere: A Public Benchmark Dataset for Model Validation of Fluid–Structure Interaction," Energies, MDPI, vol. 14(2), pages 1-36, January.
    9. Mia, Mohammad Rashed & Zhao, Ming & Wu, Helen & Munir, Adnan, 2021. "Numerical investigation of scaling effect in two-dimensional oscillating water column wave energy devices for harvesting wave energy," Renewable Energy, Elsevier, vol. 178(C), pages 1381-1397.
    10. Elhanafi, Ahmed & Macfarlane, Gregor & Ning, Dezhi, 2018. "Hydrodynamic performance of single–chamber and dual–chamber offshore–stationary Oscillating Water Column devices using CFD," Applied Energy, Elsevier, vol. 228(C), pages 82-96.
    11. Chen Wang & Zhengzhi Deng & Pinjie Wang & Yu Yao, 2019. "Wave Power Extraction from a Dual Oscillating-Water- Column System Composed of Heave-Only and Onshore Units," Energies, MDPI, vol. 12(9), pages 1-22, May.
    12. He, Guanghua & Luan, Zhengxiao & Zhang, Wei & He, Runhua & Liu, Chaogang & Yang, Kaibo & Yang, Changhao & Jing, Penglin & Zhang, Zhigang, 2023. "Review on research approaches for multi-point absorber wave energy converters," Renewable Energy, Elsevier, vol. 218(C).
    13. Windt, Christian & Davidson, Josh & Ringwood, John V., 2018. "High-fidelity numerical modelling of ocean wave energy systems: A review of computational fluid dynamics-based numerical wave tanks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 610-630.
    14. Chen, Jing & Wen, Hongjie & Wang, Yongxue & Wang, Guoyu, 2021. "A correlation study of optimal chamber width with the relative front wall draught of onshore OWC device," Energy, Elsevier, vol. 225(C).
    15. Theresa Liegl & Simon Schramm & Philipp Kuhn & Thomas Hamacher, 2023. "Considering Socio-Technical Parameters in Energy System Models—The Current Status and Next Steps," Energies, MDPI, vol. 16(20), pages 1-19, October.
    16. Elhanafi, Ahmed & Macfarlane, Gregor & Fleming, Alan & Leong, Zhi, 2017. "Experimental and numerical investigations on the hydrodynamic performance of a floating–moored oscillating water column wave energy converter," Applied Energy, Elsevier, vol. 205(C), pages 369-390.
    17. Pasta, Edoardo & Faedo, Nicolás & Mattiazzo, Giuliana & Ringwood, John V., 2023. "Towards data-driven and data-based control of wave energy systems: Classification, overview, and critical assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    18. Altunkaynak, Abdüsselam & Çelik, Anıl, 2022. "A novel Geno-Nonlinear formula for oscillating water column efficiency estimation," Energy, Elsevier, vol. 241(C).
    19. Zhang, Jincheng & Zhao, Xiaowei & Greaves, Deborah & Jin, Siya, 2023. "Modeling of a hinged-raft wave energy converter via deep operator learning and wave tank experiments," Applied Energy, Elsevier, vol. 341(C).
    20. Teixeira, Paulo R.F. & Didier, Eric, 2021. "Numerical analysis of the response of an onshore oscillating water column wave energy converter to random waves," Energy, Elsevier, vol. 220(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2020:i:1:p:26-:d:466877. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.