IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2020i1p23-d466810.html
   My bibliography  Save this article

Distributed Computational Framework for Large-Scale Stochastic Convex Optimization

Author

Listed:
  • Vahab Rostampour

    (Engineering and Technology Institute Groningen (ENTEG), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands)

  • Tamás Keviczky

    (Delft Center for Systems and Control, Delft University of Technology, 2628 CD Delft, The Netherlands)

Abstract

This paper presents a distributed computational framework for stochastic convex optimization problems using the so-called scenario approach. Such a problem arises, for example, in a large-scale network of interconnected linear systems with local and common uncertainties. Due to the large number of required scenarios to approximate the stochasticity of these problems, the stochastic optimization involves formulating a large-scale scenario program, which is in general computationally demanding. We present two novel ideas in this paper to address this issue. We first develop a technique to decompose the large-scale scenario program into distributed scenario programs that exchange a certain number of scenarios with each other to compute local decisions using the alternating direction method of multipliers (ADMM). We show the exactness of the decomposition with a-priori probabilistic guarantees for the desired level of constraint fulfillment for both local and common uncertainty sources. As our second contribution, we develop a so-called soft communication scheme based on a set parametrization technique together with the notion of probabilistically reliable sets to reduce the required communication between the subproblems. We show how to incorporate the probabilistic reliability notion into existing results and provide new guarantees for the desired level of constraint violations. Two different simulation studies of two types of interconnected network, namely dynamically coupled and coupling constraints, are presented to illustrate advantages of the proposed distributed framework.

Suggested Citation

  • Vahab Rostampour & Tamás Keviczky, 2020. "Distributed Computational Framework for Large-Scale Stochastic Convex Optimization," Energies, MDPI, vol. 14(1), pages 1-26, December.
  • Handle: RePEc:gam:jeners:v:14:y:2020:i:1:p:23-:d:466810
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/1/23/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/1/23/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Morton Slater, 1959. "Lagrange Multipliers Revisited," Cowles Foundation Discussion Papers 80, Cowles Foundation for Research in Economics, Yale University.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Denizalp Goktas & Amy Greenwald, 2022. "Gradient Descent Ascent in Min-Max Stackelberg Games," Papers 2208.09690, arXiv.org.
    2. Denizalp Goktas & Jiayi Zhao & Amy Greenwald, 2022. "Robust No-Regret Learning in Min-Max Stackelberg Games," Papers 2203.14126, arXiv.org, revised Apr 2022.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2020:i:1:p:23-:d:466810. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.