IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i9p2265-d353918.html
   My bibliography  Save this article

Flare Gas Waste Heat Recovery: Assessment of Organic Rankine Cycle for Electricity Production and Possible Coupling with Absorption Chiller

Author

Listed:
  • Hamza Semmari

    (Mechanical Engineering Department, National Polytechnic School of Constantine, BP75, A, Nouvelle Ville Ali Mendjli, Constantine 25000, Algeria)

  • Abdelkader Filali

    (Mechanical Engineering Department, National Polytechnic School of Constantine, BP75, A, Nouvelle Ville Ali Mendjli, Constantine 25000, Algeria)

  • Sofiane Aberkane

    (Mechanical Engineering Department, Faculty of Applied Sciences and Engineering, Universiy Akli Mohand Oulhadj—Bouira, Rue Drissi Yahia, Bouira 10000, Algeria
    Laboratoire Energétique, Mécanique et Ingénieries (LEMI), Energy Department, Faculty of Engineering des Sciences, Université M’hamed Bougara, Avenue de l’Indépendance, Boumerdès 35000, Algeria)

  • Renaud Feidt

    (INVIVO Expertises, 13 rue de Clermont, 44000 Nantes, France)

  • Michel Feidt

    (Laboratory of Energetics and Theoretical and Applied Mechanics, University of Lorraine, 2 av. de la Forêt de Haye, 54504 Vandoeuvre CEDEX, France)

Abstract

Every year, flare gas is responsible for more than 350 million tons of CO 2 emissions. Aside from thermal and environmental pollution impacts, flare gas contributes to global warming and enormous economic losses. Thus, waste heat recovery due to flaring gas can be explored through Organic Rankine Cycle ORC systems for electricity production. In this context, the assessment of a toluene ORC system is proposed for a potential application in an Algerian petrochemical unit. The study focuses mainly on highlighting the potential and thermodynamic performances of the ORC application to produce electricity and potential cooling thanks to coupling an absorption chiller by recovering heat due to flaring gas. Such a solution can easily be implemented as an energy efficiency key solution. The ORC electrical production can meet the increasing demand of natural gas initially intended to be provided to a gas power plant and assures the major part of the Algerian electrical production.

Suggested Citation

  • Hamza Semmari & Abdelkader Filali & Sofiane Aberkane & Renaud Feidt & Michel Feidt, 2020. "Flare Gas Waste Heat Recovery: Assessment of Organic Rankine Cycle for Electricity Production and Possible Coupling with Absorption Chiller," Energies, MDPI, vol. 13(9), pages 1-16, May.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:9:p:2265-:d:353918
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/9/2265/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/9/2265/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lai, Ngoc Anh & Wendland, Martin & Fischer, Johann, 2011. "Working fluids for high-temperature organic Rankine cycles," Energy, Elsevier, vol. 36(1), pages 199-211.
    2. Le, Van Long & Kheiri, Abdelhamid & Feidt, Michel & Pelloux-Prayer, Sandrine, 2014. "Thermodynamic and economic optimizations of a waste heat to power plant driven by a subcritical ORC (Organic Rankine Cycle) using pure or zeotropic working fluid," Energy, Elsevier, vol. 78(C), pages 622-638.
    3. Jesper Graa Andreasen & Andrea Meroni & Fredrik Haglind, 2017. "A Comparison of Organic and Steam Rankine Cycle Power Systems for Waste Heat Recovery on Large Ships," Energies, MDPI, vol. 10(4), pages 1-23, April.
    4. Comodi, Gabriele & Renzi, Massimiliano & Rossi, Mosè, 2016. "Energy efficiency improvement in oil refineries through flare gas recovery technique to meet the emission trading targets," Energy, Elsevier, vol. 109(C), pages 1-12.
    5. Zolfaghari, Mohabbat & Pirouzfar, Vahid & Sakhaeinia, Hossein, 2017. "Technical characterization and economic evaluation of recovery of flare gas in various gas-processing plants," Energy, Elsevier, vol. 124(C), pages 481-491.
    6. Christopher D. Elvidge & Mikhail Zhizhin & Kimberly Baugh & Feng-Chi Hsu & Tilottama Ghosh, 2015. "Methods for Global Survey of Natural Gas Flaring from Visible Infrared Imaging Radiometer Suite Data," Energies, MDPI, vol. 9(1), pages 1-15, December.
    7. Wang, Dongxiang & Ling, Xiang & Peng, Hao & Liu, Lin & Tao, LanLan, 2013. "Efficiency and optimal performance evaluation of organic Rankine cycle for low grade waste heat power generation," Energy, Elsevier, vol. 50(C), pages 343-352.
    8. Tahouni, Nassim & Gholami, Majid & Panjeshahi, M. Hassan, 2016. "Integration of flare gas with fuel gas network in refineries," Energy, Elsevier, vol. 111(C), pages 82-91.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maria Alessandra Ancona & Michele Bianchi & Lisa Branchini & Andrea De Pascale & Francesco Melino & Antonio Peretto & Noemi Torricelli, 2021. "Systematic Comparison of ORC and s-CO 2 Combined Heat and Power Plants for Energy Harvesting in Industrial Gas Turbines," Energies, MDPI, vol. 14(12), pages 1-22, June.
    2. Miguel Castro Oliveira & Muriel Iten & Henrique A. Matos, 2022. "Review on Water and Energy Integration in Process Industry: Water-Heat Nexus," Sustainability, MDPI, vol. 14(13), pages 1-24, June.
    3. Mika Fabricius & Daniel Øland Tarp & Thomas Wehl Rasmussen & Ahmad Arabkoohsar, 2020. "Utilization of Excess Production of Waste-Fired CHP Plants for District Cooling Supply, an Effective Solution for a Serious Challenge," Energies, MDPI, vol. 13(13), pages 1-21, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Beigiparast, Siavash & Tahouni, Nassim & Abbasi, Mojgan & Panjeshahi, M. Hassan, 2021. "Flare gas reduction in an olefin plant under different start-up procedures," Energy, Elsevier, vol. 214(C).
    2. Ehsan Barekat-Rezaei & Mahmood Farzaneh-Gord & Alireza Arjomand & Mohsen Jannatabadi & Mohammad Hossein Ahmadi & Wei-Mon Yan, 2018. "Thermo–Economical Evaluation of Producing Liquefied Natural Gas and Natural Gas Liquids from Flare Gases," Energies, MDPI, vol. 11(7), pages 1-17, July.
    3. Xu, Weicong & Zhao, Li & Mao, Samuel S. & Deng, Shuai, 2020. "Towards novel low temperature thermodynamic cycle: A critical review originated from organic Rankine cycle," Applied Energy, Elsevier, vol. 270(C).
    4. Zhang, Jianan & Qin, Kan & Li, Daijin & Luo, Kai & Dang, Jianjun, 2020. "Potential of Organic Rankine Cycles for Unmanned Underwater Vehicles," Energy, Elsevier, vol. 192(C).
    5. Yang, Min-Hsiung & Yeh, Rong-Hua, 2015. "Thermo-economic optimization of an organic Rankine cycle system for large marine diesel engine waste heat recovery," Energy, Elsevier, vol. 82(C), pages 256-268.
    6. Luisa Fernanda Ibañez-Gómez & Sebastian Albarracín-Quintero & Santiago Céspedes-Zuluaga & Erik Montes-Páez & Oswaldo Hideo Ando Junior & João Paulo Carmo & João Eduardo Ribeiro & Melkzedekue Moraes Al, 2022. "Process Optimization of the Flaring Gas for Field Applications," Energies, MDPI, vol. 15(20), pages 1-19, October.
    7. Xu, Weicong & Zhao, Ruikai & Deng, Shuai & Zhao, Li & Mao, Samuel S., 2021. "Is zeotropic working fluid a promising option for organic Rankine cycle: A quantitative evaluation based on literature data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    8. Meroni, Andrea & Andreasen, Jesper Graa & Persico, Giacomo & Haglind, Fredrik, 2018. "Optimization of organic Rankine cycle power systems considering multistage axial turbine design," Applied Energy, Elsevier, vol. 209(C), pages 339-354.
    9. Bao, Junjiang & Zhao, Li, 2013. "A review of working fluid and expander selections for organic Rankine cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 325-342.
    10. Li, Xin & Hu, Longhua & Shang, Fengju, 2018. "Flame downwash transition and its maximum length with increasing fuel supply of non-premixed jet in cross flow," Energy, Elsevier, vol. 164(C), pages 298-305.
    11. Eshaghi, Soroush & Hamrang, Farzad, 2021. "An innovative techno-economic analysis for the selection of an integrated ejector system in the flare gas recovery of a refinery plant," Energy, Elsevier, vol. 228(C).
    12. Xu, Heng & Gao, Naiping & Zhu, Tong, 2016. "Investigation on the fluid selection and evaporation parametric optimization for sub- and supercritical organic Rankine cycle," Energy, Elsevier, vol. 96(C), pages 59-68.
    13. Liu, Wei & Meinel, Dominik & Gleinser, Moritz & Wieland, Christoph & Spliethoff, Hartmut, 2015. "Optimal Heat Source Temperature for thermodynamic optimization of sub-critical Organic Rankine Cycles," Energy, Elsevier, vol. 88(C), pages 897-906.
    14. Okoro, Emmanuel E. & Adeleye, Bosede N. & Okoye, Lawrence U. & Maxwell, Omeje, 2021. "Gas flaring, ineffective utilization of energy resource and associated economic impact in Nigeria: Evidence from ARDL and Bayer-Hanck cointegration techniques," Energy Policy, Elsevier, vol. 153(C).
    15. Enrico Baldasso & Maria E. Mondejar & Ulrik Larsen & Fredrik Haglind, 2020. "Regression Models for the Evaluation of the Techno-Economic Potential of Organic Rankine Cycle-Based Waste Heat Recovery Systems on Board Ships Using Low Sulfur Fuels," Energies, MDPI, vol. 13(6), pages 1-20, March.
    16. Li, You-Rong & Du, Mei-Tang & Wu, Chun-Mei & Wu, Shuang-Ying & Liu, Chao, 2014. "Potential of organic Rankine cycle using zeotropic mixtures as working fluids for waste heat recovery," Energy, Elsevier, vol. 77(C), pages 509-519.
    17. Bhaskar Sinha & Supriyo Roy & Manju Bhagat, 2020. "Sustainable Green Policy by Managing Flare Gas Recovery: A Case with Middle East Oil and Gas Industry," Vision, , vol. 24(1), pages 35-46, March.
    18. Nezhadfard, Mahya & Khalili-Garakani, Amirhossein, 2020. "Power generation as a useful option for flare gas recovery: Enviro-economic evaluation of different scenarios," Energy, Elsevier, vol. 204(C).
    19. Jesper Graa Andreasen & Martin Ryhl Kærn & Fredrik Haglind, 2019. "Assessment of Methods for Performance Comparison of Pure and Zeotropic Working Fluids for Organic Rankine Cycle Power Systems," Energies, MDPI, vol. 12(9), pages 1-25, May.
    20. Fanxiao, Meng & Enhua, Wang & Bo, Zhang, 2021. "Possibility of optimal efficiency prediction of an organic Rankine cycle based on molecular property method for high-temperature exhaust gases," Energy, Elsevier, vol. 222(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:9:p:2265-:d:353918. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.